Инструкция по сборке твердотельного реле своими руками

Содержание
  1. Принцип действия
  2. Виды устройства
  3. Твердотелки – надо ли их использовать?
  4. Различия схем включения реле
  5. По управлению (виду входного управляющего сигнала):
  6. По виду коммутируемого тока
  7. По количеству фаз
  8. Схемы подключения твердотельных реле
  9. Преимущества и недостатки
  10. Емкостные датчики схемы на логических элементах
  11. Конструкция и детали
  12. Схема замены реле на полевой транзистор
  13. Список радиоэлементов
  14. Принципиальная схема SSR реле
  15. Характеристики твердотельного реле
  16. Простой термоиндикатор
  17. Фотореле с двухкаскадным усилителем
  18. Схема реле влажности, реле уровня жидкости
  19. Реле что реагирует на уровень напряжения
  20. Принцип работы
  21. Разновидности реле
  22. Количество фаз
  23. Тип переключения
  24. Тип активации воспринимающего элемента
  25. Тип управления нагрузкой
  26. Тип поступления сигнала
  27. Схема Подключения Пятиконтактного Реле
  28. Схема 5 контактного реле
  29. Как устроено и применяется реле
  30. Что нужно знать о работе реле?
  31. Особенности процесса изготовления
  32. Особенности устройства твердотельного реле
  33. Промышленный образец Siemens V23103-S2232-B302
  34. Особенности защитной цепи
  35. Детали и корпус
  36. Как сделать ТТР своими руками?
  37. Электронные компоненты для сборки схемы
  38. Проверка собранной схемы на работоспособность
  39. Устройство монолитного корпуса
  40. Приготовление компаунда и заливка корпуса
  41. Что такое твердотельные реле и их классификация
  42. Выводы

Принцип действия

Схема всех SSR практически одинаковая, даже если есть разница, она никак не влияет на принцип действия.

Схема SSR постоянного тока

Принцип действия механизма заключается в замыкании и размыкания контактов, которые передают напряжение. Выполняется это с помощью активатора, то есть твердотельного прибора.В зависимости от характера тока (переменного или постоянного) используется тип силового элемента (полупроводниковый прибор). Для постоянного тока используются транзисторы, для переменного – симисторы и тиристоры. Транзистор пропускает постоянный ток. Симистор проводит ток в двух направлениях, а тиристор может проводить напряжение и в 1ом и в 2х направлениях.

Схема твердотельного реле переменного тока

Схема цепей

На вход поступает электрический сигнал, дальше он подаётся на оптический светодиод. Оптическая развязка обеспечивает изоляцию между входной, промежуточной и выходной цепью. В работу включается триггерная цепь. Она управляет переключением выхода ТТР. Переключающая цепь передает напряжение на нагрузку, которая представлена транзистором, тиристором или симистором. Защитная цепь нужна для надежной работы ТТР при различных нагрузках.

Для предотвращения сгорания контактов устройства, рекомендуется установка предохранителя.

Виды устройства

SSR различаются по следующим свойствам.

  1. Характер тока в сети
  • Однофазное реле способно коммутировать электрический ток от 10 до 120 А или от 100 до 500 А. Управление проводится через фазу с помощью аналогового сигнала (непрерывный по времени) и переменного резистора (элемент электрической цепи). Как правило, корпус однофазного SSR стандартный, модульный (завершенная конструкция).

Однофазное реле используется в бытовых приборах.

Рекомендация. Установка однофазного ТТР в электрическую систему обезопасит домашнюю технику от поломки.

  • Трехфазное релекоммутирует электричество на трёх фазах сразу. Диапазон напряжения 10 – 120 А. Отдельными характеристиками обладает реверсивное трехфазное ТТР. Выделяется надёжной коммутацией цепей. Сфера использования – непостоянная работа двигателя.

Чтобы не происходило перенапряжение, используется варистор (полупроводниковый резистор)или предохранитель. Трёхфазное SSR имеет долгий срок использования в сравнении с однофазным устройством.

  1. Способ управления
  • Коммутация постоянного тока. Применяется при постоянном напряжении от 3 до 32 вольт. Отличаются высокой надежностью работы. Поддержка температур от -30 до +70 соблюдается практически у всех моделей.
  • Коммутация переменного тока. SSR переменного тока характеризуется маленьким соотношением электромагнитных помех, бесшумностью, экономным энергопотреблением и оперативной работой. Диапазон напряжения от 90 до 250 вольт.
  • Реле, управляемое вручную. Оно позволяет управлять настройками.

Коммутация – процесс переключение и отключение напряжения. Происходит моментально при замыкании и размыкании цепей.

  1. Тип коммуникации
  • Конструкция с фазовым регулятором мощности. Тип коммуникации – изменения на выходе нагрузки с управлением мощности, нагреванием (уровень освещения).
  • Прибор, контролируемый нулевым регулятором мощности. Область использования –коммутация ёмкостных (конденсатных) резистивных (лампы и нагреватели) слабо индуктивных приборов. SSR с нулем необходимы для коммутации индуктивных (трансформаторы, двигатели) и резистивных нагрузок при необходимости мгновенного действия.
  1. По конструкции
  • Устанавливаемые на одну рейку.
  • Монтируемые на планки переходного типа.

Твердотелки – надо ли их использовать?

Для начала рассмотрим также целесообразность применения таких реле. Например, реальный случай:

У нас на предприятии на одном станке стоят соленоидные клапаны с питанием 24VDC 2А. Эти два клапана соединены параллельно, и включаются-выключаются с частотой примерно 1 раз в секунду. Питание идёт через реле. И, несмотря на то, что номинальный ток реле 10А индуктивной нагрузки, приходилось менять его каждый месяц-два. Поставили мы твердотелку – и забыли, работает без шума и проблем уже два года.

Другой случай, когда такие реле не нужны:

Простейший контроллер температуры, точность поддержания не существенна. Нагрузка – ТЭНы, работают в воде круглосуточно. Чаще, чем раз в год, один из ТЭНов замыкает или коротит на корпус. Здесь большая вероятность того, что ТТР выгорит, так как они очень чувствительны к перегрузкам.

О перегрузках и защите твердотельных реле будет подробно сказано ниже, а в данном случае целесообразно применить обычный контактор, который прекрасно справляется с перегрузкой и стоит в 10 раз дешевле.

Поэтому, за модой гнаться не стоит, а лучше применить трезвый расчет. Расчет по току и по финансам.

Если кому-то придёт в голову, можно кнопкой звонка или герконом запускать двигатель мощностью 10 кВт! Но не так всё просто, подробности будут ниже.

Различия схем включения реле

По виду подключения твердотельные реле можно разделить на следующие категории:

По управлению (виду входного управляющего сигнала):

  • постоянное напряжение (встречается чаще всего),
  • переменное напряжение,
  • постоянный ток 4-20 мА,
  • переменный резистор.

По виду коммутируемого тока

  • твердотельные реле переменного тока
  • твердотельные реле постоянного тока

По количеству фаз

  • одна фаза
  • три фазы (как правило, фактически это две фазы)

В любом случае, для выбора ТТР и его схемы включения нужно руководствоваться мануалами на данное реле.

Кстати, рекомендую мою статью про трехфазное и однофазное напряжение. Терминология и отличия разжеваны не пальцах)))

Схемы подключения твердотельных реле

Теперь рассмотрим подключение твердотельного реле подробнее.

Управление твердотельными реле схемотехнически такое же, как и у обычного реле. Ниже упрощенно показана схема включения реле переменного тока с сигналом управления 24В постоянного тока:

Схема включения твердотельного реле

Схема показана для реле, у которого управляющее напряжение постоянное, от 5 до 24 Вольт. Данное реле может коммутировать переменное напряжение до 240 Вольт, ток до 20 А.

Как работает схема. На вход (контакты 3 и 4, соблюдать полярность!) подается управляющее напряжение от источника 24В. Подается оно через цепь управления, которая представлена как НО контакт. Этим контактом может быть и обычное реле, и выход контроллера, и датчик с релейным выходом или транзисторным выходом типа PNP.

Про НО контакты и PNP выходы датчиков я подробно написал в этой статье. Очень рекомендую!

Ещё раз напоминаю –

НЗ – это закрытые (замкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) течёт ток.

НО – это открытые (незамкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) ток не течёт.

Условные выходные контакты ТТР также будут НО, т.к. без активации цепи управления нагрузка выключена.

Теперь подробнее по управлению твердотелками.

Преимущества и недостатки

Для изготовления твердотельного реле можно использовать цепочки, состоящие из схемы управления и симистора. Чтобы улучшить процесс отвода тепла, следует использовать термопасту, разместив ее на всей площади контакта алюминиевого основания и полупроводникового элемента. Это связано с тем, что твердотельные реле переключения переменного тока используют SCR и триак в качестве выходного переключающего устройства, которое продолжает проводить после удаления входного сигнала до тех пор, пока переменный ток, протекающий через устройство, не опустится ниже своего порогового значения или не сохранит значение тока. Подходит для управления резистивной, емкостной и индуктивной нагрузкой.

В данном случае необходимо подобрать источник с мощностью достаточной для включения всей группы реле.

Но если токи высокие, будет происходить сильный нагрев элементов.
Прежде чем пытаться изготовить твердотельное реле самостоятельно, логично ознакомиться с базовой конструкцией подобных устройств, понять принцип их функционирования. Схема для подключения реле Все полупроводниковые устройства такого рода поделены на участки, среди которых: входная часть, оптическая развязка, триггер, а также цепи переключения и защиты.

При этом пиковые кратковременные значения тока могут достигать величины А.

Переключение происходит с высокой скоростью. Заливка компаундом Преимущества и недостатки В отличие от других типов реле, твердотельное лишено подвижных контактов.

Выходная цепь большинства стандартных твердотельных реле сконфигурирована для выполнения только одного типа переключающего действия, дающего эквивалент нормально разомкнутого однополюсного однополюсного SPST-NO режима работы электромеханического реле. Опто-триачный изолятор MOC имеет те же характеристики, но со встроенным обнаружением пересечения нуля, позволяющим нагрузке получать полную мощность без больших пусковых токов при переключении индуктивных нагрузок.

Емкостные датчики схемы на логических элементах

Схема работает на звуковых частотах. Для увеличения чувствительности в контур генератора низкой частоты добавлен полевой транзистор.

Генератор прямоугольных импульсов с частотой следования последних 1 кГц выполнен на элементах DD1.1 и DD1.2. В качестве выходного каскада предназначен DD1.3, нагрузкой которого является телефонный динамик.

С целью увеличения чувствительности схемы можно добавить количество радиокомпонентов, введенных в RC – цепь.

Схема должна начать работать сразу после включения. Иногда нужно подстроить сопротивление R1 на пороговую чувствительность.

При регулировке реле возможны два варианта его функционирования: срыв или возникновение генерации при появлении емкости. Установка нужного нам схемотехнического варианта выбирается подбором номинала переменного сопротивления R1. При приближении руки к Е1 подстройкой сопротивления R1 делают так, чтобы расстояние, с которого запускалась схема, составляло 10 – 20 сантиметров.

Для включения различных исполнительных механизмов в емкостном реле используем сигнал с выхода элемента DD1.3.

Для включения света проходят рядом со вторым емкостным преобразователем, а для отключения освещения в помещении с первым.

Срабатывание преобразователя приводит к переключению RS триггера построенного на логических элементах. Емкостные датчики сделаны из отрезков коаксиального кабеля , с конца которых на длину около 50 сантиметров снят экран. Край экрана требуется изолировать. Датчики устанавливают на дверном каркасе. Длину неэкранированной части датчиков и номиналы сопротивлений R5 и R6 подбирают при отладки схемы так, чтобы триггер надежно срабатывал при прохождении биологического объекта на расстоянии 10 сантиметров от датчика.

Пока емкость между датчиком и корпусом мала, на сопротивлении R2, и на входе элемента DD1.3 формируются короткие импульсы положительной полярности, а на выходе элемента такие же импульсы но уже инвертированные. Емкость С5 медленно заряжается через сопротивление R3, когда на выходе элемента имеется уровень логической единицы, и быстро разряжается через диод VD1 при логическом нуле. Т.к разрядный ток выше зарядного, напряжение на емкости С5 имеет уровень логического нуля, и элемент DD1.4 заперт для сигнала звуковой частоты.

При приближении к элементу любого биологического объекта его емкость относительно общего провода возрастает, амплитуда импульсов на сопротивлении R2 падает ниже порога включения DD1.3. На его выходе будет постоянная логическая единица, до этого уровня осуществится наполнение емкостью конденсатор С5. Элемент DD1.4 начнет пропускать сигнал звуковой частоты, и в динамике раздастся звуковой сигнал. Чувствительность емкостного реле можно регулировать подстроечной емкостью С3.

Датчик изготавливается своими руками с использованием металлической сетки с размерами 20 х 20 сантиметров, для хорошего уровня чувствительности реле.

В этой схеме емкостного реле к логическому элементу DD1.4 подсоединен транзистор VT1, в коллекторную цепь которого включен тиристор VS1 управляющий мощной нагрузкой.

Емкостные датчики на транзисторах своими руками

На транзисторах VT1 – VT3 собран усилитель электрического сигнала, формирующегося в результате наводки от человека. Емкость С1, диоды D2 и D3 используются для защиты реле от любого ложного срабатывания.

Сенсор изготавливается своими руками из алюминиевой или медной пластины с размерами 100 мм х 100 мм.

Емкостные датчики присутствия

Устройство, собранное по схеме ниже, реагирует на присутствие любого проводящего объекта, в том числе и человека. Чувствительность датчика можно регулировать потенциометром. Схема не позволяет обнаруживать движение объектов, но она хороша именно в роли датчика присутствия. Одним из очевидным решением использования в быту емкостного датчика присутствия является самодельная схема автоматическое открывания дверей. Для этих целей схема устройства должна быть размещена с передней части двери.

Основой этого емкостного устройства являются осциллятор с T1 и одновибратор. Осциллятор это типовой генератор Клаппа стабильной частоты. Поверхность емкостного датчика действует как конденсатор для колебательного контура, и в этой конфигурации частота будет около 1 МГц.

Время переключения схемы можно изменять в широком диапазоне с помощью переменного резистора Р2. Не надо подносить металлические предметы близко к датчику, т.к емкостное реле останется в закрытом состоянии. Эта схема также может быть применена в роли детектора агрессивных жидкостей. Главное достинство здесь заключается в том, что поверхность емкостного датчика не вступает в прямой контакт с жидкостью.

Конструкция емкостного датчика на биполярном и полевом транзисторе из журнала моделист конструктор 1 1991 года

На полевом транзисторе выполнен маломощный генератор с частотой следования импульсов 465 кГц, а на биполярном транзисторе электронный ключ для срабатывания реле К1, контактами которого включается исполнительный механизм. Диод используется в схеме при случайном изменении полярности подсоединяемого источника питания.

Радиус действия емкостного реле и чувствительность, зависит от регулировки С1 и конструкции датчика, если вас заинтересовала это разработка то вы можете скачать журнал моделист конструктор по ссылке чуть выше.

Емкостного реле на биполярных транзисторах

Основа схемы маломощный генератор ВЧ. К колебательному контуру L1C4 подсоединена металлическая пластина. Поднесенная к ней ладонь руки или другая часть тела человека представляет собой вторую обкладку конденсатора Cд. Емкость конденсатора тем выше, чем больше площадь его обкладок и меньше расстояние между ними. Катушку индуктивности L1 намотайте на каркасе 8—9 мм, склеенном из бумаги. Катушка СОСТОИТ ИЗ 22—25 витков провода ПЭВ-1 0,3—0,4, намотанных виток к витку. Отвод необходимо сделать от 5—7-го витка, считая от начала.

Настройка реле

Подсоедините в коллекторную цепь биполяярного транзистора V1 миллиамперметр на 10 мА и между точкой соединений миллиамперметра с катушкой L1 и эмиттером второго транзистора подсоединить конденсатор 0,01—0,5 мкФ. Металлическую пластину временно отключите от генератора. Следя за показаниями миллиамперметра, кратковременно замыкаем L1C4. Коллекторный ток V1 дрезко падает: с 2,5—3 до 0,5—0,8 мА. Максимальные показания соответствуют генерации, наименьшие — ее отсутствию. Если генератор возбуждается, присоедините к нему пластину и медленно поднесите ладонь. Коллекторный ток должен снизиться до уровня 0,5—0,8 мА.

Слабые изменения тока усиливается с помощью двухкаскадного УНЧ на V2, V3. А для того чтобы можно было управлять нагрузкой бесконтактным методом, конечная ступень схемы построена на тринисторе V5.

Движок переменного сопротивления R4 устанавливают в крайнее нижнее положение. И затем его медленно двигают вверх до тех пор, пока не включится индикатор H1. Теперь подносим ладонь к пластине и проверяем работу устройства.

Диод V4 в цепи тринистора V5 исключает появление импульса обратного напряжения. А V6 и сопротивление R7 защищают тринистор от пробоя. Для тринистора с Uо6р. = 400 В элементы V6 и R7 можно убрать из схемы.

Конструкция и детали

Чувствительность реле изменяют подстроечным конденсатором С4. В устройстве, монтаж которого показан на рис. 1, б, можно применить подстроеч-ные конденсаторы КПВ, КПК-МЛ, КПК-1, резистор R2 составлен из двух-, трех резисторов меньшего номинала, для повышения чувствительности сопротивление этого резистора можно увеличить до 10 … 15 МОм. Ток, потребляемый устройством в дежурном режиме, составляет 1,5 … 2 мА, а при подаче звукового сигнала — 3 … 4 мА.

Монтажная плата устройства показана на рис. 1. Датчик Е1 представляет собой металлическую сетку или пластину размерами примерно 200X Х200 мм.

Схема замены реле на полевой транзистор

Электронное транзисторное реле собрано на небольшой универсальной плате и установлено проводками на плату контроллера.

Теперь наступила полная тишина, небольшой радиатор что видно на фото является вообще ненужным, транзистор холодный даже после нескольких часов работы.

Радиоэлементы IRF540N и PC817 использовались только потому, что были в наличии. Их можно заменить на очень многое (исходя из токов, напряжений и управляющих сигналов).

При повторении схемы учтите некоторые рекомендации: напряжение на затворе будет около 6 В что недостаточно для полного и безопасного открытия транзистора. Рекомендуем заменить резистор между затвором и PC817 на 1 кОм и лучше убрать резистор с коллектора оптопары.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Микросхема CD4013A (К561ТМ2) 1 DIP16 Поиск в магазине Отрон В блокнот
VT1 Транзистор NPN 2SC3124 1 SMD Поиск в магазине Отрон В блокнот
VT2 Биполярный транзистор
2SC2655
1 TO-92 hFE > 200 Поиск в магазине Отрон В блокнот
VD1 Супрессор 1.5KE16CA 1 Поиск в магазине Отрон В блокнот
VD2 Диодный мост
2W10
1 Поиск в магазине Отрон В блокнот
VD3 Диод импульсный КД521А-Б (1N4148) 1 Поиск в магазине Отрон В блокнот
C1 Конденсатор плёночный 1 µF 400V 1 Поиск в магазине Отрон В блокнот
С2 Конденсатор электролитический 470 µF 16V 1 105°C Поиск в магазине Отрон В блокнот
С3 Конденсатор керамический 3 µF 25 V 1 SMD 1206 Поиск в магазине Отрон В блокнот
С4 Конденсатор керамический 8 µF 16 V 1 SMD 1206 Поиск в магазине Отрон В блокнот
С5 Конденсатор керамический 0.1 µF 25 V 1 SMD 1206 Поиск в магазине Отрон В блокнот
R1, R10 Резистор
470 кОм
2 0.125 Вт Поиск в магазине Отрон В блокнот
R2 Термистор 10 Ом 1 Силовой Поиск в магазине Отрон В блокнот
R3 Терморезистор NTC MF52AT 10 КОм 1 Поиск в магазине Отрон В блокнот
R4* Резистор
2.2 кОм
1 Подобрать Поиск в магазине Отрон В блокнот
R5 Резистор
47 кОм
1 SMD 1206 Поиск в магазине Отрон В блокнот
R6 Резистор
2 кОм
1 SMD 1206 Поиск в магазине Отрон В блокнот
R7 Резистор
220 кОм
1 SMD 1206 Поиск в магазине Отрон В блокнот
R8 Резистор
20 кОм
1 SMD 1206 Поиск в магазине Отрон В блокнот
R Резистор
0 Ом
3 SMD 1206 Поиск в магазине Отрон В блокнот
Rel1 Реле 12 V 250 V 10-16A 1 Обмотка 180 ом Поиск в магазине Отрон В блокнот
F1 Термопредохранитель 135°С 15 А 250 V 1 Поиск в магазине Отрон В блокнот
S2 Кнопка без фиксации 250 V 0.1 A 1 Нормальноразомкнутая Поиск в магазине Отрон В блокнот
HL1 Лампа Неоновая 1 Поиск в магазине Отрон В блокнот
ТЭН1 Электронагреватель 1 – 2 КВт 250 V 1 Поиск в магазине Отрон В блокнот
Добавить все

Принципиальная схема SSR реле

SSR реле, предназначенное для переключения нагрузок постоянного тока до 10 ампер. Оно выполняет ту же функцию, что и любое электромеханические реле, но не имеет движущихся частей. Твердотельные реле имеют намного более быстрое время переключения по сравнению с электромеханическими, и не изнашивается. Входной триггер предназначен под напряжения 3 – 9 В постоянного тока (1,5 – 12 Вольт с транзистором), а выходная нагрузка под питание 12 – 100 В постоянного тока.

Характеристики твердотельного реле

  • Входной управляющий сигнал 1,5 – 12 В постоянного тока
  • Оптимальное напряжение самой схемы VCC 12 – 18 В
  • Питание нагрузки 12 – 60 В постоянного тока
  • Частота входного сигнала до 50 кГц
  • Напряжение изоляции 3 kV



Примечание: нужно увеличить резистор на светодиоде, если питание нагрузки выше чем 24 В.

Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Драйвер затвора необходимо питать в пределах 12 – 18 В постоянного тока. Теплоотвод необходим только для предельной нагрузки. До 5-ти ампер можно не ставить.

Простой термоиндикатор

Термореле (рис. 3), или, говоря точнее, термоиндикатор, выполнен по мостовой схеме [ВРЛ 83-24]. Когда мост сбалансирован, ни один из светодиодов не светится. Стоит температуре повыситься, включится один из светодиодов.

Рис. 3. Принципиальная схема простого термо-индикатора на одном транзисторе и светодиодах.

Если температура, напротив, понизится, загорится другой светодиод. Чтобы различать, в какую сторону изменяется температура, для индикации ее повышения можно использовать светодиод красного свечения, а для индикации понижения — светодиод желтого (или зеленого) свечения. Для балансировки схемы вместо резистора R2 лучше включить потенциометр.

Фотореле с двухкаскадным усилителем

Схема фотореле, показанная на рис. 5, содержит двухкаскадный усилитель постоянного тока, выполненный на транзисторах разного типа проводимости.

Рис. 5. Принципиальная схема фотореле с двухкаскадным усилителем.

При изменении электрического сопротивления фотодиода и, соответственно, смещения на базе транзистора VT1, увеличится коллекторный ток выходного транзистора усилителя VT2, и напряжение на резисторе R2 возрастет.

Как только это напряжение превысит напряжение пробоя порогового элемента — полупроводникового стабилитрона VD2, включится оконечный каскад на транзисторе VT3, управляющий работой исполнительного механизма (реле).

Использование в схеме порогового элемента (полупроводникового стабилитрона) повышает четкость срабатывания фотореле.

Схема реле влажности, реле уровня жидкости

Реле влажности или реле уровня жидкости (рис. 7) так же, как и некоторые из вышеприведенных схем выполнено на основе триггера Шмитта [МК 2/86-22].

Рис. 7. Принципиальная схема реле влажности, реле уровня жидкости.

Порог срабатывания устройства устанавливают регулировкой потенциометра R3. Контакты датчика влажности выполнены в виде медного (Си) и железного (Fe) стержней, погруженных в землю.

При изменении содержания влаги в земле электропроводность среды и сопротивление между электродами меняются. С увеличением смещения на базе транзистора VT1 он открывается.

Коллекторный и эмиттерный токи транзистора возрастают, что приводит к росту напряжения на потенциометре R3 и, соответственно, к переключению триггера.

Реле срабатывает. Устройство может быть настроено на уменьшение электропроводности земли ниже заданной нормы. Тогда, при срабатывании исполнительного устройства, включается система автоматического полива земли (растений).

Реле что реагирует на уровень напряжения

Реле напряжения (рис. 9, 10) используются для контроля заряда или разряда элементов питания, аккумуляторов, контроля напряжения питания, поддержания напряжения на заданном уровне. Схемы, описанные в книге П. Величкова и В. Христова, предназначены для контроля разряда (рис. 9) или перезаряда (рис. 10) аккумулятора.

Рис. 9. Принципиальная схема реле для контроля разряда аккумулятора.

Рис. 10. Принципиальная схема реле для контроля перезаряда аккумулятора.

При необходимости напряжение срабатывания этих устройств может быть изменено. Порог срабатывания задается типом стабилитрона. Для изменения в небольших пределах порога срабатывания подобных реле последовательно со стабилитроном можно включать 1 — 3 германиевых Щ9) или кремниевых (КД503, КД102) диодов в прямом направлении.

Катоды диодов должны «смотреть» в сторону базы входного транзистора. Германиевый диод смещает порог срабатывания примерно на 0,3 В, а кремниевый — на 0,5 В.

Для цепочки из двух, трех диодов эти значения удваиваются (утраиваются). Промежуточные значения напряжений можно получить при последовательном включении германиевого и кремниевого диодов (0,8 В).

Принцип работы

Принцип действия электромагнитных реле

Принцип работы реле 4 контактного или 12-вольтной модели схож. Без подачи напряжения на устройство якорь при помощи возвратной пружины отдален от сердечника.

В момент, когда подается напряжение, по обмотке начинает двигаться ток, магнитное поле которого воздействует на сердечник. Намагниченный элемент посредством преодоления усилий возвратной пружины, притягивает якорь. Его активные контакты перемещаются, размыкаясь или замыкаясь с неподвижными.

После прекращения подачи напряжения ток обмотки пропадает, происходит размагничивание сердечника. Возвратная пружина приводит якорь и контакты в исходное состояние.

Разновидности реле

Реле контроля напряжения однофазное цифровое на DIN-рейку

Релейные устройства классифицируются по нескольким параметрам.

Количество фаз

Подразделяются на:

  • однофазные – предназначены для подачи напряжения в жилых помещениях;
  • трехфазные – подходят для применения в промышленных условиях.

Трехфазники отключают питание всего оборудования при скачках вольтажа на одной из линий.

Тип переключения

Можно приобрести модели:

  • максимальные – повышают параметр напряжения до определенной величины;
  • минимальные – понижают показатель до заданного значения.

Порог напряжения пользователем не устанавливается.

Тип активации воспринимающего элемента

Реле промежуточное РП-18-54 220В DC

Воспринимающий элемент, по включению которого будет работать прибор, – это электромагнит, магнитоэлектрический узел, индукционная или электродинамическая система. В зависимости от его вида существуют реле:

  • первичные с прямым подключением контактов в сеть;
  • вторичные – могут подключаться через измерительные индуктивные или емкостные трансформаторы;
  • промежуточные – усиливают или преобразуют сигналы первичных/вторичных моделей.

Функции воспринимающего элемента – преобразование напряжения в процесс движения якоря относительно ярма.

Тип управления нагрузкой

Для управления напряжением применяются модели:

  • прямого действия – нагрузка переключается контактами;
  • косвенного действия – нагрузку подключаются вторичные элементы.

Нагрузка подается и приостанавливается с определенными промежутками.

Тип поступления сигнала

Герконовое реле

В продаже можно найти следующие коммутационные устройства:

  • электронные – обеспечивают контроль напряжения в условиях высокой нагрузки. Управляют освещением и узлами автомобиля;
  • герконовые – небольшие модели в виде катушки. Предназначены для замыкания, переключения, размыкания сети. Чувствительны к механическим воздействиям и ультразвуку;
  • электротепловые – отключают и включают электрический ток по нагреву биметаллической пластины. Используются для электродвигателей на производстве, обустройства однофазной или трехфазной электросети;
  • временной выдержки – для создания кратковременных пауз применяются схемы замедления. Приборы работают в автомобилях, светофорах, елочных гирляндах;
  • таймеры света – позволяют программировать освещение теплиц, аквариумов, животноводческих комплексов. К ним подключаются нагреватели, вентиляторы;
  • электромагнитные – ток статистической обмотки активируется по воздействию магнитного поля. Приборы со средней нагрузкой до 320 А и напряжение до 1,6 кВт могут работать только в сети с постоянным током.

Конструктивно стандартный регулятор имеет вид пакетника для крепления на дин-рейку. Некоторые модели исполняются в виде переходников и удлинителей.

Схема Подключения Пятиконтактного Реле

Общий смысл подключения через реле — нагрузка на выключатель, который управляет устанавливаемым оборудованием. В состоянии покоя, т.

А чем больше деталей — тем меньше надежность. In: Бизнес секреты Зная, как работает реле, Вы сможете осуществить различные схемы подключения к электропроводке автомобиля.

Схема подключения центрального замка при дополнительно установленном активаторе активаторах к сигнализациям, не имеющим встроенных реле интерфейса центрального замка. Контакты 30 и 86 поменяны местами.

А именно. Контакты обеспечивают управление электроцепью, размыкая и замыкая ее.

У вас нет возможности отключить ДХО до тех пор, пока вы не вытащите ключ из замка зажигания.

Напряжение подключается к катушке, магнитное поле притягивает якорь, он замыкает или размыкает контакты.

Схема 5 контактного реле


Контакты 85 и 86 — это катушка. Для трехфазной сети выполняется следующее: Определяется кабель подключения — медный, с сечением 1,,5 мм2. Давайте немного расскажу о принципе работы 5ти контактного реле. Инвертируется полярность.

На помощь опять приходит реле. Находится фаза по маркерам А, В, С и клемма нуля N. Зная, как работает реле, Вы сможете осуществить различные схемы подключения к электропроводке автомобиля. Сейчас зарабатываю тыс. Для управления реле блокировки можно использовать секретную кнопку, пару геркон-магнит или штатный орган управления выдающий сигнал управления положительной полярности при включенном зажигании например силовой сигнал на стеклоподъёмнике или обогрев заднего стекла.

Для большей автоматизации возьмите питание от основной цепи автомобиля, которая включается при включении зажигания; К контакту 87А присоединяем ДХО, которые будут включены всегда; К контакту 87 присоединяем фары, которые буду включаться только при отключении ДХО; На контакты 85 или 86 не имеет значения , подаем управляющий сигнал от кнопки включения фар в салоне; Оставшийся контакт 85 или 86 присоединяем к корпусу автомобиля. Обычно реле имеет 5 контактов бывают и 4-хконтактные и 7-ми и т. После того, как вы поймете принцип работы этого несложного устройства, разобраться с его подключением будет гораздо легче. Напряжение отпускания: 1, Также советую скачать приложение на телефон, с телефона работать намного удобнее.
Как подключить центральный замок в машине.

Как устроено и применяется реле

Как известно, габариты и мощность выключателя, коммутирующего мощную нагрузку, должны этой нагрузке соответствовать. Нельзя включить такие серьезные потребители тока в автомобиле, как, скажем, вентилятор радиатора или обогрев стекла крошечной кнопочкой – её контакты просто сгорят от одного-двух нажатий. Соответственно, кнопка должна быть крупной, мощной, тугой, с четкой фиксацией положений on/off. К ней должны подходить длинные толстые провода, рассчитанные на полный ток нагрузки.

Но в современном автомобиле с его изящным дизайном интерьера места таким кнопкам нет, да и толстые провода с дорогостоящей медью стараются применять экономно. Поэтому в качестве дистанционного силового коммутатора чаще всего применяется реле – оно устанавливается рядом с нагрузкой или в релейном боксе, а управляем мы им с помощью крошечной маломощной кнопочки с подведенными к ней тоненькими проводками, дизайн которой легко вписать в салон современной машины.

Внутри простейшего типичного реле располагается электромагнит, на который подается слабый управляющий сигнал, а уже подвижное коромысло, которое притягивает к себе сработавший электромагнит, в свою очередь замыкает два силовых контакта, которые и включают мощную электрическую цепь.

В автомобилях чаще всего используются два типа реле: с парой замыкающих контактов и с тройкой переключающих. В последнем при срабатывании реле один контакт замыкается на общий, а второй в это время отключается от него. Существуют, конечно же, и более сложные реле, с несколькими группами контактов в одном корпусе – замыкающими, размыкающими, переключающими. Но встречаются они существенно реже.

Обратите внимание, что на нижеприведенной картинке у реле с переключающей контактной тройкой рабочие контакты пронумерованы. Пара контактов 1 и 2 называется «нормально замкнутые». Пара 2 и 3 – «нормально разомкнутые». Состоянием «нормально» считается состояние, когда на обмотку реле НЕ подано напряжение.

Наиболее распространенные универсальные автомобильные реле и их контактные выводы со стандартным расположением ножек для установки в блок предохранителей или в выносную колодку выглядят так:

Герметичное реле из комплекта нештатного ксенона выглядит иначе. Залитый компаундом корпус позволяет ему надежно работать при установке вблизи фар, где водяной и грязевой туман проникают под капот через решетку радиатора. Цоколевка выводов – нестандартная, поэтому реле комплектуется собственным разъемом.

Для коммутации больших токов, в десятки и сотни ампер, используют реле иной конструкции, нежели описанные выше. Технически суть неизменна – обмотка примагничивает к себе подвижный сердечник, который замыкает контакты, но контакты имеют значительную площадь, крепление проводов – под болт от М6 и толще, обмотка – повышенной мощности. Конструктивно эти реле сходны со втягивающим реле стартера. Применяются они на грузовых машинах в качестве выключателей массы и пусковых реле того же стартера, на разной спецтехнике для включения особо мощных потребителей. Нештатно их используют для аварийной коммутации джиперских лебедок, создания систем пневмоподвески, в качестве главного реле системы самодельных электромобилей и т.п.

К слову, само слово «реле» переводится с французского как «перепряжка лошадей», и появился сей термин в эпоху развития первых телеграфных линий связи. Малая мощность гальванических батарей того времени не позволяла передавать точки и тире на дальние расстояния – все электричество «гасло» на длинных проводах, и доходившие до корреспондента остатки тока были неспособны шевельнуть головку печатающего аппарата. В результате линии связи стали делать «с пересадочными станциями» – на промежуточном пункте ослабевшим током активировали не печатающий аппарат, а слабенькое реле, которое уже, в свою очередь, открывало путь току из свежей батареи – и далее, и далее.

Что нужно знать о работе реле?

Напряжение срабатывания

Напряжение, которое обозначено на корпусе реле, – это усредненное оптимальное напряжение. На автомобильных реле пропечатано «12V», но срабатывают они и при напряжении 10 вольт, сработают и при 7-8 вольтах. Аналогично и 14,5-14,8 вольт, до которых поднимается напряжение в бортсети при запущенном двигателе, им не вредит. Так что 12 вольт – это условный номинал. Хотя реле от 24-вольтовой грузовой машины в 12-вольтовой сети не заработает – тут уж разница слишком велика…

Коммутируемый ток

Второй главный параметр реле после рабочего напряжения обмотки – максимальный ток, который может пропустить через себя контактная группа без перегрева и пригорания. Указывается он обычно на корпусе – в амперах. В принципе, контакты всех автомобильных реле достаточно мощные, «слабаков» тут не водится. Даже самое миниатюрное коммутирует 15-20 ампер, реле стандартных размеров – 20-40 ампер. Если ток указывается двойной (например, 30/40 А), то это означает кратковременный и долговременный режимы. Собственно, запас по току никогда не мешает – но это касается в основном какого-то нештатного электрооборудования автомобиля, подключаемого самостоятельно.

Нумерация выводов

Выводы автомобильных реле маркируются в соответствии с международным электротехническим стандартом для автопрома. Два вывода обмотки пронумерованы цифрами «85» и «86». Выводы контактной «двойки» или «тройки» (замыкающие или переключающие) обозначаются как «30», «87» и «87а».

Впрочем, гарантии маркировка, увы, не дает. Российские производители порой маркируют нормально замкнутый контакт как «88», а иностранные – как «87а». Неожиданные вариации стандартной нумерации встречаются и у безымянных «брендов», и у компаний уровня Bosch. А иногда контакты и вовсе маркируются цифрами от 1 до 5. Так что если тип контактов не подписан на корпусе, что нередко случается, лучше всего проверить распиновку неизвестного реле при помощи тестера и источника питания 12 вольт – подробнее об этом ниже.

Материал и тип выводов

Контактные выводы реле, к которым подключается электропроводка, могут быть «ножевого» типа (для установки реле в разъем колодки), а также под винтовую клемму (обычно у особо мощных реле или реле устаревших типов). Контакты бывают «белыми» или «желтыми». Желтые и красные – латунь и медь, матовые белые – луженая медь или латунь, блестящие белые – сталь, покрытая никелем. Луженые латунь и медь не окисляются, но голая латунь и медь – лучше, хотя и склонны темнеть, ухудшая контакт. Никелированная сталь также не окисляется, но сопротивление её высоковато. Неплохо, когда силовые выводы – медные, а выводы обмотки – никелированные стальные.

Плюс и минус питания

Чтобы реле сработало, на его обмотку подается питающее напряжение. Полярность его – безразлична для реле. Плюс на «85» и минус на «86», или наоборот – без разницы. Один контакт обмотки реле, как правило, постоянно подсоединен к плюсу или минусу, а на второй приходит управляющее напряжение с кнопки или какого-либо электронного модуля.

В прежние годы чаще использовалось постоянное подключение реле к минусу и плюсовой управляющий сигнал, сейчас более распространен обратный вариант. Хотя это не догма – бывает по-всякому, в том числе и в рамках одного автомобиля. Единственный вариант исключения из правил – реле, в котором параллельно обмотке подключен диод – тут уже полярность важна.

Реле с диодом параллельно катушке

Если напряжение на обмотку реле подает не кнопка, а электронный модуль (штатный или нештатный – например, охранное оборудование), то при отключении обмотка дает индуктивный всплеск напряжения, который способен повредить управляющую электронику. Чтобы погасить всплеск, параллельно обмотке реле включается защитный диод.

Как правило, внутри электронных узлов эти диоды уже есть, но иногда (в особенности в случае различного допоборудования) требуется реле со встроенным внутри диодом (в этом случае его символ маркирован на корпусе), а изредка применяется выносная колодка с диодом, припаянным со стороны проводов. И если вы устанавливаете какое-то нештатное электрооборудование, нуждающееся, согласно инструкции, в таком реле, требуется строго соблюдать полярность при подключении обмотки.

Температура корпуса

Обмотка реле потребляет мощность около 2-2,5 ватт, из-за чего его корпус во время работы может достаточно сильно греться – это не криминально. Но нагрев допускается у обмотки, а не у контактов. Перегрев же контактов для реле губителен: они обугливаются, разрушаются и деформируются. Такое случается чаще всего в неудачных экземплярах реле российского и китайского производства, у которых плоскости контактов порой не параллельны друг другу, контактная поверхность из-за перекоса недостаточна, и при работе идет точечный токовый разогрев.

Реле не выходит из строя мгновенно, но рано или поздно перестает включать нагрузку, или наоборот – контакты привариваются друг к другу, и реле перестает размыкаться. К сожалению, выявить и предупредить такую проблему не совсем реально.

Особенности процесса изготовления

Рекомендуется заключать все элементы схемы в металлический корпус, чтобы охлаждение происходило намного лучше. Для надежности нужно заливать короб при помощи клеевого пистолета. Главное при работе – это правильно подобрать металлическую подложку, чтобы обеспечить наилучшее отведение тепла. Для изготовления используется опалубка, в которую заключается твердотельное реле постоянного тока. Своими руками ее изготовить можно из любого материала.

Идеально подойдет пластиковая коробка или отрезок трубы. Все зависит от того, какой размер у изделия. Металлическая подложка должна размещаться в этой опалубке. Тщательно нужно залить клеем все элементы схемы, отверстия в корпусе, чтобы обеспечить качественную изоляцию. Обратите внимание на то, что у симисторов выводы обычно неоднозначно определяются, поэтому их нужно заранее проверить. Для проверки открытия симистора необходимо использовать мегомметр. Как только симистор откроется, сопротивление изменится от нескольких десятков мегаом до 1-2 кОм.

Особенности устройства твердотельного реле

Независимо от того, какой производитель твердотельного реле, элементная база у него постоянна – в редких случаях можно найти незначительные различия. На входе обычно устанавливается резистор, соединяется он последовательно с оптическим устройством. Иногда сопротивление изготавливается по сложной конструкции, в которую включается защита от обратной полярности и регулятор тока. Нужно выделить такие свойства твердотельных реле:

  1. При помощи оптической развязки обеспечивается изоляция различных цепей электронного устройства.
  2. При помощи переключающей цепи удается осуществить подачу на нагрузку питающего напряжения.
  3. С помощью триггерной цепи обрабатывается входной сигнал и происходит его переключение на выход.

Промышленный образец Siemens V23103-S2232-B302

Схема твердотельного приведена на рисунке:

По этой схеме своими руками твердотельное реле можно довольно быстро изготовить, трудностей при этом не возникнет. Главное – это найти необходимые компоненты или аналоги. Защита может находиться как внутри корпуса реле, так и отдельно. Теперь нужно рассмотреть дополнительные устройства, которые необходимо использовать совместно с реле.

Особенности защитной цепи

Как видите, трудностей при изготовлении нет никаких. Если сомневаетесь в своих силах, то лучше, конечно, приобрести промышленный образец устройства. Можно выделить ключевые особенности самодельных реле:

  1. Управляющее напряжение – 3..30 В, ток постоянный.
  2. К выходу допускается подключать источники напряжением 115..280 В.
  3. Выходная мощность порядка 400 Вт.
  4. Минимальный ток, при котором работает устройство, составляет около 50 мА.

Если устройство используется для коммутации низких токов (до 2 А), то нет необходимости устанавливать радиатор. Но если токи высокие, будет происходить сильный нагрев элементов. Поэтому об охлаждении нужно позаботиться – установите дополнительный радиатор и кулер (если имеется возможность организовать питание для него).

Обратите внимание на то, что при управлении асинхронными моторами нужно увеличивать примерно в 10 раз запас по току. При запуске двигатель «тянет» из сети ток, который в несколько раз превышает рабочее значение. Именно по этой причине нужно использовать силовые элементы со значительным запасом по току.

Детали и корпус

Нам потребуется:

  • F1 – предохранитель на 100 мА.
  • S1 – любой маломощный переключатель.
  • C1 – конденсатор 0.063 мкФ 630 Вольт.
  • C2 – 10 – 100 мкФ 25 Вольт.
  • C3 – 2.7 нФ 50 Вольт.
  • C4 – 0.047 мкФ 630 Вольт.
  • R1 – 470 кОм 0.25 Ватт.
  • R2 – 100 Ом 0.25 Ватт.
  • R3 – 330 Ом 0.5 Ватт.
  • R4 – 470 Ом 2 Ватта.
  • R5 – 47 Ом 5 Ватт.
  • R6 – 470 кОм 0.25 Ватт.
  • R7 – варистор TVR12471, или подобный.
  • R8 – нагрузка.
  • D1 – любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например – 1N4007.
  • D2 – стабилитрон на 6.2 Вольта.
  • D3 – диод 1N4007.
  • T1 – симистор ВТ138-800.
  • LED1 – любой сигнальный светодиод.

Как сделать ТТР своими руками?

Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.

Вот такой выглядит самодельная конструкция твердотельного реле. Сделать нечто подобное несложно. Нужны лишь базовые навыки электронщика и электрика. Материальные затраты небольшие

Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.

Электронные компоненты для сборки схемы

Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:

  1. Оптопара типа МОС3083.
  2. Симистор типа ВТ139-800.
  3. Транзистор серии КТ209.
  4. Резисторы, стабилитрон, светодиод.

Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:

Принципиальная схема маломощного твердотельного реле для сборки своими руками. Небольшое количество деталей и простой навесной монтаж позволяют спаять схему без труда

Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.

А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.

Проверка собранной схемы на работоспособность

Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.

Проверка работоспособности твердотельного реле с помощью измерительного прибора. Если на вход устройства подано управляющее напряжение, переход симистора должен быть открыт

Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».

Устройство монолитного корпуса

Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.

Каркас под заливку корпуса будущего прибора. Делается из картонной полосы или других подходящих материалов. На алюминиевой подложке закрепляется универсальным клеем

Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.

На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.

Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.

Закрепление симистора на алюминиевой подложке. Главное условие – этот электронный компонент необходимо плотно прижать к металлическому основанию. Только так обеспечивается качественный теплоотвод и надёжность работы

Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.

Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.

Вариант крепления симистора к подложке при помощи клёпки. С обратной стороны клёпка расплющивается заподлицо с поверхностью подложки

Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).

Приготовление компаунда и заливка корпуса

Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:

  1. Эпоксидная смола без отвердителя.
  2. Порошок алебастра.

Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.

Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.

Так выглядит готовый экземпляр твердотельного реле, собранного своими руками. Несколько необычно и не очень презентабельно, но достаточно надёжно

Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.

По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.

Что такое твердотельные реле и их классификация

Самодельное твердотельное реле

Твердотельные реле (или ТТР) – это электронные приборы со структурой, не содержащей механических компонентов. Принцип их действия основан на особенностях работы полупроводниковых переходов, отличающихся высокой скоростью коммутаций и защищенностью от физических полей.

Переключение твердотельных реле основано на принципе срабатывания электронного ключа.

В качестве ключевых элементов в этих изделиях традиционно применяются такие распространенные электронные компоненты, как транзисторы, управляемые диоды или тиристоры. В зависимости от используемых при их изготовлении структур ТТР подразделяются на приборы, построенные на основе одного из перечисленных элементов (реле на симисторах, например).

В соответствии с режимами работы и по виду коммутируемых напряжений образцы твердотельных реле, изготавливаемых на базе полупроводников, делятся на следующие группы:

  • устройства, коммутирующие постоянный ток;
  • приборы, управляющие работой нагрузочных линий с переменными токовыми параметрами;
  • универсальные изделия, работающие в различных цепях.

Для первых устройств характерно управление постоянными напряжениями величиной не более 32 Вольт. Представители двух оставшихся позиций способны коммутировать значительные по величине потенциалы (вплоть до десятков киловольт).

Выводы

Самостоятельное изготовление твердотельных реле – вполне возможное решение, но применительно к изделиям под низковольтную нагрузку, потребляющую относительно малую мощность.

Более мощные и высоковольтные приборы сделать своими руками сложно. Да и обойдётся эта затея по финансам в такую же сумму, какой оценивается заводской экземпляр. Так что в случае надобности проще купить готовый прибор промышленного изготовления.

Источники

  • https://electricvdele.ru/elektrooborudovanie/datchiki/tverdotelnoe-rele.html
  • https://SamElectric.ru/promyshlennoe-2/tverdotelnye-rele-shemy-podklyucheniya.html
  • https://tokzamer.ru/bez-rubriki/tverdotelnoe-rele-shema-principialnaya
  • http://www.texnic.ru/konstr/avtomatika/001/avtomatika030.html
  • https://RadioStorage.net/1307-emkostnoe-rele-na-mikroskheme-k176la7.html
  • https://radioskot.ru/publ/nachinajushhim/tranzistor_vmesto_rele/5-1-0-1428
  • https://cxem.net/house/1-415.php
  • https://tehnoobzor.com/schemes/automatics/825-shema-tverdotelnogo-rele-na-12v.html
  • https://www.qrz.ru/schemes/contribute/security/12_shem_avtomaticeskogo_rele_temperatura_zvuk_svet_vlaznost_.html
  • https://StrojDvor.ru/elektrosnabzhenie/kak-podklyuchit-dvux-chetyrex-i-pyatikontaktnoe-rele/
  • https://tokzamer.ru/bez-rubriki/shema-podkljucheniya-pyatikontaktnogo-rele
  • https://www.kolesa.ru/article/avtomobilnye-rele-kak-ustroeny-kak-ih-vybirat-i-proveryat
  • https://FB.ru/article/374516/tverdotelnoe-rele-svoimi-rukami-shema
  • https://SdelaySam-SvoimiRukami.ru/4493-tverdotelnoe-rele-svoimi-rukami.html
  • https://sovet-ingenera.com/elektrika/rele/tverdotelnoe-rele-svoimi-rukami.html
  • https://StrojDvor.ru/elektrosnabzhenie/tverdotelnoe-rele-svoimi-rukami/

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об инженерных системах
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: