Контроллеры заряда аккумуляторов для ветрогенератора и солнечных батарей

Содержание
  1. Использование энергии ветра
  2. Ветряк или солнечная энергия без аккумуляторов
  3. Аккумуляторы для ветрогенератора: типы, технологии, назначение
  4. Для чего контроллер аккумулятора
  5. Функции устройств
  6. Алгоритм функционирования
  7. Контроллер заряда солнечной батареи своими руками
  8. Схема контроллера заряда
  9. Комплектующие для самодельного контроллера управления работой солнечной батареи
  10. Принцип работы собираемой схемы
  11. Сборка контроллера заряда аккумулятора
  12. Обзор лучших моделей контролеров заряда аккумулятора на Алиэкспресс
  13. Где устанавливается
  14. Как осуществить подключение самостоятельно
  15. Что будет, если не производить установку
  16. Самый простой контроллер для RGB-ленты на трех транзисторах
  17. Необходимые детали, инструменты
  18. Сборка схемы контроллера
  19. Что собой представляет управляющий контроллер?
  20. Принцип работы устройства
  21. Входы и выходы контроллера
  22. Типы связи контроллеров
  23. Варианты конфигураций
  24. Создаем контроллер умного дома самостоятельно
  25. Контроллер для ветрогенератора: зачем нужен и как работает
  26. Технические характеристики
  27. Контроллер для ветрогенератора
  28. Принцип действия
  29. Основные характеристики
  30. Виды
  31. Контроллер для ветрогенератора и солнечных панелей
  32. Расчет контроллера
  33. Контроллер своими руками (схема)
  34. Схемы балластного регулятора
  35. Прерывание по минусовому контакту
  36. Прерывание по плюсу
  37. Усложнённый вариант схемы контроллера

Использование энергии ветра

Использование энергии ветра имеет важное преимущество перед другими способами выработки электрического тока. Источник достается бесплатно, имеет неиссякаемую энергию, способен обеспечить большое количество потребителей. Проблема возникает на стадии приема и обработки энергии — ветер имеет крайне нестабильную природу, особенно в условиях России.

Огромные возможности источника сильно распылены в пространстве, собрать их в одной точке весьма сложно. Для этого требуется использовать целый комплекс оборудования и аппаратуры, позволяющей принимать, преобразовывать и накапливать энергию на случай отсутствия ветра. Необходимость использования множества приборов и устройств является причиной дороговизны ветрогенераторов и заставляет задумываться об изменении технологии обработки энергии.

Чаще всего звучат предложения отказаться от использования аккумуляторов и отдавать полученную энергию прямо в сеть. Срок службы АКБ невелик, возможность перезаряда снижает его еще больше. На Западе практика поставок энергии от частных ветряков в сеть практикуется уже достаточно долгое время.

Полностью зарядив батареи, ветряк переключается на режим передачи энергии в сеть, за что владелец получает некоторую оплату. Но полностью никто от использования накопителей не отказывается, поскольку отсутствие ветра вынудит обходиться без энергии до его появления.

Ветряк или солнечная энергия без аккумуляторов

Полный отказ от использования аккумуляторов возможен только для простых систем, обеспечивающих энергией отдельные, нетребовательные потребляющие устройства. Возможные скачки напряжения или его временное исчезновение им не должны угрожать выходом из строя. К ним можно отнести простые светильники, насосы для водоснабжения.

Подключение потребителей напрямую к генератору создает неравномерный режим питания, зависящий от скорости ветра в данный момент. Для большинства бытовых или промышленных приборов такой режим неприемлем и грозит выходом из строя.

Солнечные батареи находятся в похожих условиях. Периодичность появления источника, зависимость от погоды и состояния атмосферы также вынуждают запасать энергию в аккумуляторах. Исключением могут служить солнечные нагреватели, обеспечивающие отопление домов в зимний период.

Технологии подключения частных генераторов к сети в России не используются. Это объясняется ничтожным количеством таких устройств и нерентабельностью установки оборудования для этого. В данном случае причина состоит в нецелесообразности, а не в отсутствии способа реализации.

Есть простые разработки, предлагающие использование энергии с генератора через трансформаторы, но они не решают основной проблемы — отсутствия питания в безветренную погоду. Кроме того, для качественного питания потребуются стабилизаторы тока и прочие устройства, что в конечном счете образует комплекс, не меньший по объему оборудования, чем состав с аккумуляторами.

Полноценное пользование ветряком, подключенным к сети и функционирующим в двух режимах, требует наличия централизованной системы, рассчитанной на большое количество подобных абонентов. Отдельные единичные источники во внимание приниматься не станут, поскольку полученная энергия от них не оправдает затраты на модификацию оборудования.

Аккумуляторы для ветрогенератора: типы, технологии, назначение

В связке с ветрогенераторами используют разные типы аккумуляторов. В их число входят:

  • стартерные АКБ для автомобилей. Простые и распространенные устройства. Существуют негерметизированные образцы, выдерживающие до 100 циклов разряда и ежегодно нуждающиеся в обновлении электролита и дистиллированной воды. Герметизированные модели — одноразовые, выдерживают до 200 циклов разряда, после чего подлежат утилизации
  • батареи AGM. Герметизированные кислотные накопители, способные выдержать до 400 циклов разрядки. Не переносят перезарядки. При изготовлении этих батарей используются абсорбированный электролит, которым пропитывается стекловолоконный заполнитель отсеков. В режиме подзарядки способны выдерживать до 10-12 лет работы
  • гелевые АКБ. В составе электролита имеется силикагель, способствующий загустению. Вследствие такого состояния батареи не выделяют вредных паров, не вытекают при нарушении герметичности корпуса. Чувствительны к перезарядке, но на разрядку реагируют достаточно спокойно. Способны служить около 10 лет
  • панцирные АКБ. Герметизированные необслуживаемые устройства нового поколения. Благодаря конструктивным особенностям способны выдерживать до 1500 циклов. Пластины покрыты кислотопроницаемым полимерным слоем, защищающим их от осыпания и разрушения, отсюда такая долговечность батареи

Специфика кислотных АКБ состоит в способности электролита выкипать при перезаряде. Большинство устройств нового поколения необслуживаемое, т.е. их конструкция не предусматривает возможность пополнить объем электролита, поэтому необходимо следить за уровнем заряда и содержать контроллер (устройство, автоматически отключающее АКБ от генератора при достижении критических значений) в исправности.

Кроме того, учитывая падение емкости АКБ при понижении температуры, следует обеспечить условия для хранения, позволяющие работать в оптимальном режиме.

Для чего контроллер аккумулятора

Несмотря на то, что емкость современных АКБ, как и их функциональные возможности, существенно увеличилась, алгоритм их зарядки остался практически неизменным. Когда батарея разряжается, к ней подключают специальное оборудование, которое за счет стимулирования химических реакций в аккумуляторе производит пополнение его емкости.

Важно! Если своевременно не прекратить зарядку, то АКБ может перегреться, и даже произойти взрыв. В ситуации, когда тока для восполнения заряда недостаточно, батарея не может восстановить свою емкость, нахождение длительное время в разряженном состоянии может существенно сократить срок эксплуатации.

Чтобы все процессы происходили корректно, а встроенный в мобильный прибор элемент питания работал как можно дольше, необходим контроллер заряда аккумулятора. В его основе, как правило, находятся два резистора, которые контролируют верхний и нижний пределы напряжения. В самом начале восполнения энергии они пропускают через себя максимальный ток, затем его постепенно сокращают, предохраняя АКБ от перезарядки. Если напряжение ниже минимально необходимого, резистор дополняет его до требуемого уровня за счет ранее накопленной энергии.

Контроллер заряда АКБ в обязательном порядке присутствует в ноутбуках, мобильных телефонах, переносных кассовых аппаратах, планшетах и так далее. Устанавливают его и в возобновляемые источники энергии, поскольку принцип их работы заключается в том, чтобы накопить энергию в специальную батарею в период солнечной или ветряной активности, а затем передавать ее потребителю. Чтобы контролировать данные процедуры, нужен в данном оборудовании описываемый элемент.

Применение приборов для отслеживания заряда аккумулятора

Функции устройств

Описываемые приборы требуются для решения следующих задач:

  • Оптимизировать систему питания, обеспечить ее стабильность и максимальную продолжительность работоспособности.
  • Сохранять ресурсы АКБ, увеличить срок ее службы.
  • Предотвращать фатальные поломки аккумулятора, обеспечивать безопасность использования.
Зарядка для телефона без розетки

Базой для решения этих задач является контроль процесса разряда и восполнения емкости батареи. В частности, необходимо отслеживать, чтобы ток был меньше максимально допустимого уровня, но и не ниже тока саморазряда АКБ. Поскольку описываемая деятельность происходят в аккумуляторе в результате химической реакции, необходимо контролировать все ее этапы, не допуская перегревания элемента питания и других побочных эффектов.

Дополнительная информация. В ноутбуках и мобильных телефонах описываемые элементы выполняют дополнительную функцию: управляют потоками энергии при пополнении емкости при одновременной работе оборудования, что требует внесения дополнительных элементов в схему. В возобновляемых источниках энергии, в которых используется несколько банок АКБ, устройства необходимы, чтобы заряжать только пустые батареи.

Большинство современного мобильного оборудования обладает встроенными контроллерами, поэтому делать приспособление для отслеживания зарядки аккумулятора своими руками, как правило, нет необходимости. Вместе с тем некоторые радиолюбители самостоятельно изготавливают различные приборы с АКБ, в такой ситуации возникает вопрос, как сделать прибор для отслеживания пополнения емкости своими руками, чтобы обеспечить безопасность функционирования оборудования и долговечность батареи.

Для этого необходимо использовать специальную микросхему, на которой должны быть установлены транзисторы для управления соответствующими процессами, а также датчики уровня тока и напряжения. Затем прибор подключается к батарее и электрической сети, пользователь может видеть уровень напряжения и быть уверенным в том, что пополнение емкости вовремя прекратится.

Подключение прибора

Алгоритм функционирования

На большинстве микросхем, имеющих 6 или 8 выводов (источников поступления и передачи сигналов о состоянии батареи) устанавливается два полевых транзистора. Один из них отвечает за подключение или отключение нагрузки (различных элементов мобильного устройства, потребляющих энергию). Второй – производит аналогичные действия, но с источником тока.

Сердце умного дома – контроллер

Результат работы такой схемы следующий:

  • При достижении величины тока максимального уровня транзистор, отвечающий за пополнение емкости, отключает соответствующее устройство и накапливает энергию внутри себя, одновременно выделяя ее в виде тепла (поэтому при длительной зарядке телефона можно обнаружить, что он становится горячим), защищая таким способом АКБ от перезаряда.
  • Если достигнуто минимальное напряжение, то транзистор, отвечающий за подключение нагрузки, отключает все элементы, и мобильное оборудование принудительно переводится в режим сна. Затем, когда оно подключается к источнику тока, его работа возобновляется.

Обратите внимание! Функционирование возобновляется только при достижении определенного уровня тока, поэтому часто, подключая, например, разряженный телефон к электрической сети, необходимо подождать некоторое время прежде, чем он включится.

Работа устройства

Итак, описываемые элементы схем (как заводские, так и сделанные самостоятельно) требуются для управления пополнением емкости и разрядки батарей. Это позволяет обеспечить безопасность работы мобильного оборудования и увеличить его срок службы. Кроме того, такие элементы необходимы и в возобновляемых источниках энергии, где также требуются управление накоплением энергии и ее последующая передача потребителям.

Контроллер заряда солнечной батареи своими руками

В специализированных компаниях, а также торговых сетях занимающихся электронным оборудованием можно приобрести контроллеры заряда, выпускаемые различными компаниями производителями, как отечественными, так и зарубежными.

Подобное оборудование стоит достаточно дорого, поэтому для снижения стоимости гелио установки и сокращения сроков ее окупаемости, подобное устройство можно собрать своими руками.

В этом случае, конечно же, необходимо уметь пользоваться паяльником и иметь хотя бы начальные знания касающиеся электронных устройств и способах их монтажа.

Схема контроллера заряда

Существует множество схем подобного оборудования, различающихся по степени сложности изготовления и техническим возможностям готового изделия после его сборки.

Конкретную схему каждый пользователь выбирает для себя сам, ориентируясь на свой опыт работы с электронными изделиями и умением их собирать самостоятельно.

На ниже следующем рисунке приведена схема контроллера, о сборке которого будет рассказано далее.

Конструктивная схема контроллера заряда аккумуляторной батареи на основе двух микросхем

Комплектующие для самодельного контроллера управления работой солнечной батареи

Для сборки контроллера по выше приведенной схеме потребуются следующие комплектующие, а именно:

  • Микросхемы — LM385-2.5 (2 шт.);
  • Конденсаторы – емкостью 100 пф (2 штуки) и 1000 пф (1 штука);
  • Диоды — SB540 (1 штука) или аналогичный с рабочим током равным максимальному току, вырабатываемому солнечной батареей, а также диод Шотки;
  • Транзисторы — BUZ11, BC548, BC556;
  • Резисторы — R1 – 1k5, R2 – 100k, R3 – 68k, R4 и R5 – 10k, R6 – 220k, R7 – 100k, R8 – 92k, R9 – 10k, R10 – 92k.
  • Светодиодный индикатор – 1 штука.
Принципиальная схема контроллера заряда на основе двух микросхем типа LM385-2.5

Важно! Данная схема рассчитана на работу с одной солнечной батареей, способной вырабатывать максимальный ток 4,0 Ампера и аккумулятором, емкость которого составляет 3000 А/час.

При необходимости комплектующие можно заменить, а также усовершенствовать данную схему, если появиться такая необходимость.

Вот некоторые советы по замене комплектующих:

  1. Если заменить микросхемы, то следует менять и конденсатор С2 (его емкость должна соответствовать новым характеристикам микросхем).
  2. При невозможности приобрести резисторы сопротивлением 92К (R8 и R10 на схеме), их следует заменить на два подключаемых последовательно, сопротивлениями 82 и 10 К.

К сведению! При использовании солнечных панелей, максимальный ток которых более 4,0 А, необходимо использовать более мощные транзисторы и диоды, чем указанных в рассматриваемой схеме.

Принцип работы собираемой схемы

В темное время суток, когда солнечная батарея не вырабатывает электрический ток, контроллер находиться в режиме ожидания (спящий режим).

При попадании солнечных лучей на фотоэлектрические элементы гелио установки, начинается вырабатываться электрический ток, и при достижении напряжения, равного 10,0 В контроллер включается в работу (электрический ток подается на клеммы аккумулятора).

Когда напряжение станет равным 14,0 В, включается в работу усилитель U1 и зарядка прекращается (в это время разряжается конденсатор С2).

После разрядки конденсатора напряжение падает и закрывается мощный транзистор (VT3 на схеме) и зарядка АКБ возобновляется.

Разнообразие моделей готовых контроллеров заряда позволяет выбрать нужную по техническим характеристикам и в заданном ценовом диапазоне

Сборка контроллера заряда аккумулятора

Для того, чтобы было удобно использовать собираемую конструкцию, необходимо подобрать корпус, в котором будет размещена плата с установленными на нее электронными составляющими и изготовить саму эту плату.

В магазинах группы «Сделай САМ» можно приобрести специальные заготовки для изготовления печатных плат, представляющие собой диэлектрик (стеклотекстолит) в виде пластины, на который нанесен слой меди или иного токопроводящего материала.

Изготовление печатной платы осуществляется в следующей последовательности:

  1. На бумаге рисуется шаблон, соответствующий схеме, предполагаемой к размещению на печатной плате. На шаблоне прорисовываются дорожки между элементами схемы, а также места установки этих элементов.
  2. Подбирается заготовка печатной платы нужного размера (если необходимо, то излишки обрезаются при помощи ножовки по металлу).
  3. Шаблон приклеивается при помощи клея «Момент» на подготовленную заготовку.
  4. В местах крепления элементов схемы просверливаются отверстия (сверло диаметром 0,7 – 0,8 мм).
  5. Шаблон удаляется, а на заготовке платы, между просверленными отверстиями, прорисовываются дорожки связи (для этого используется краска стойкая к водным растворам).
  6. Когда дорожки и места пайки электронных составляющих прорисованы, можно приступать к травлению платы.

Важно! Перед нанесением краски на поверхность печатной платы ее следует обезжирить при помощи бензина, ацетона или простого моющего средства.

Вариант прорисовки шаблона печатной платы с нанесением комплектующих и электрических дорожек

К сведению! Травление, в домашних условиях, можно выполнить с помощью перекиси водорода или раствором хлорного железа.

Травление осуществляется следующим образом, а именно:

  • В специальную емкость, стойкую к воздействиям химических веществ (стекло, эмалированная посуда и т.д.) наливается подготовленный раствор;
  • Затем в раствор погружается печатная плата с нанесенным на него рисунком.
  • Когда токопроводящий слой, в местах, где отсутствует краска, раствориться, плата достается из раствора, после чего обливается проточной водой;
  • После этого заготовка вытирается насухо и с ее поверхности удаляется краска, обозначающая электрические дорожки (используется наждачная бумага).

Когда краска будет удалена, печатная плата готова к размещению электронных элементов схемы.

Внешняя печатная плата изготовленная своими руками

В соответствии с выбранной схемой и шаблоном размещения комплектующих, выполняется впаивание элементов конструкции, в местах где просверлены монтажные отверстия.

Готовая плата помещается в подготовленный корпус, на котором монтируются места вывода контактов к источнику электрического тока (солнечная батарея) и накопительному элементу гелио системы (аккумуляторная батарея).

Проверятся работоспособность собранной схемы, и выполняется установка собранного контроллера в выбранном месте размещения.

Обзор лучших моделей контролеров заряда аккумулятора на Алиэкспресс

Ниже представлено описание моделей контроллеров, характеристики которых были по достоинству оценены многочисленными покупателями:

  • TZT DC 6-60 в 30A

Предназначена для свинцово-кислотных аккумуляторов. Диапазон напряжения – от 6 до 60В. Модель оснащена ЖК-дисплеем XY-L30A. На мониторе отображаются напряжение, процент и продолжительность заряда. На базе устройства реализована опция автоматического контроля заряда. Также имеется функция установки времени заряда, формат – 24 часа, максимальная продолжительность – 100 часов.

  • CORE SET XY-L10A

Данный контроллер заряда аккумулятора с Алиэкспресс адаптирован для работы со свинцово-кислотными аккумуляторами. Рабочие параметры и время зарядки отображаются на ЖК дисплее. В числе предлагаемых функций: автоматический контроль, установка времени, управление с мобильных устройств и ПК через последовательное подключение.

  • Diymore XH-M604

Рассчитан на входное напряжение в пределах 6-60В. Модель отличается высокой точностью отображения и управления – 0,1В. Уровень заряда отображается на ЖК-мониторе. Допускает установку уровней начального и конечного напряжения. Имеет компактные размеры 81*54*18 мм.

  • EASUN POWER ICharger PWM 10A 20A 30A

Встроенный промышленный микроконтроллер, на базе которой реализована 4-х ступенчатая функция широтно-импульсного преобразования PWM. Работает со свинцово-кислотными и гелиевыми аккумуляторными батареями. Рассчитан на напряжение 12-24В и силу тока 10A, 20A, 30A в зависимости от модификации. Все рабочие параметры отображаются на ЖК-дисплее. Также в числе достоинств модели – встроенная защита от короткого замыкания, обратная защита, защита от перегрузки. В процессе работы отмечен низкий уровень нагревания устройства.

  • SLAR MG 60A/50A/40A/30A/20A/10A

Контроллер с PWM-функцией. На LED-индикаторе отображается входное и выходное напряжение, а также – уровень заряда батареи в реальном времени. Может подключаться и управляться с компьютера через USB-порт. Возможен выбор одного из трех режимов заряда – быстрый, стабильный и поддерживающий с опцией контроля заряда. Встроена защита от перезаряда, перегрузки и от короткого замыкания.

  • Y-SOLAR Z10/Z20/Z30

Модель контроллера заряда аккумулятора с Алиэкспресс с PWM-функцией в нескольких вариантах исполнения, в зависимости от силы тока 30A, 20A, 10A напряжением 12-24В и мощностью от 120 до 360Вт. Подходит для различных типов свинцово-кислотных батарей с таймером нагрузки. Установлен двойной светодиодный дисплей. Возможно подключение и управление через USB-порт. На базе контроллера реализована 4-ступенчатая зарядка Boost, ABS, Equalization, Float благодаря использованию промышленного микропроцессора STM 8. Имеется опция таймера и запоминания ранее настроенных параметров. Встроена защита от перегрева, обратного тока, короткого замыкания, разрядки и перегрузки. На устройство предоставляется гарантия производителя 12 месяцев.

Где устанавливается

Подключается контроллер между аккумулятором и панелью солнечных батарей. Однако, в схему подключения обязательно должен входить инвертор для солнечной батареи. Инвертор используется для преобразования постоянного 12 В тока, который идет от солнечной батареи, в переменный 220 В, текущий в любой розетке в доме, монтируется после аккумуляторной батареи.

Также важно наличие предохранителя, который выполняет защитную функцию от различных перегрузок и замыканий. Поэтому, для того чтобы обезопасить свой дом, необходимо произвести монтаж предохранителя. При наличии большого количества солнечных панелей желательна установка предохранителей между каждым элементом схемы.

На рисунке ниже показано, как выглядит инвертор (черная коробка):

Стандартная схема подключения выглядит примерно так, как представлена на рисунке ниже.

Схема показывает, что солнечные панели соединены с контроллером, электрическая энергия поступает в контроллер, а затем накапливается в аккумуляторе. Из аккумулятора она снова идет в контроллер, а после поступает в инвертор. А уже после инвертора идет распределение на потребление.

Как осуществить подключение самостоятельно

Подключить контроллер заряда MPPT для солнечных батарей достаточно просто. Для этого следует понимать принципиальную схему подключения, уметь в ней разбираться и ориентироваться, а также соединить все провода и элементы с полным соблюдением полярности, то есть «плюс» соединить с «плюсом», а «минус» с «минусом».

На рисунке ниже можно увидеть специальные отверстия с «плюсом» и минусом», собственно следует правильно засунуть в них нужные провода.

Более подробная схема представлена ниже.

Схема подключения довольно-таки проста, важно соединить все элементы, соблюдая полярность, а также необходимо учесть, чтобы они безопасно располагались в доме и не угрожали жизни. Справиться с такой задачей сможет каждый.

Возможно подключение нескольких аккумуляторов, однако здесь присоединять необходимо смешанным способом, а именно: группа аккумуляторных батарей подключается между собой параллельно, а к контроллеру последовательно. Подобную схему можно увидеть на рисунке ниже.

Как видно из схемы, количество аккумуляторов не ограничено. Однако, следует понимать, что при таком числе необходимо приобрести соответствующий инвертор, который будет способен справиться с такой большой нагрузкой.

Что будет, если не производить установку

Если не установить контроллеры MPPT или PWM для солнечных батарей, то потребуется самостоятельный контроль за уровнем напряжения на батареях. Осуществить это можно с помощью вольтметра, как показано на рисунке ниже.

Однако, при таком подключении уровень заряда аккумулятора не будет фиксироваться, в результате чего он может перегореть и выйти из строя. Данный способ подключения возможен при подключении небольших солнечных панелей для питания устройств мощностью не более 0,1 кВт. Для панелей, которые будут питать целый дом, монтаж без контроллера не рекомендуется, так как оборудование выйдет из строя намного раньше. Также из-за перезарядки аккумулятора могут выйти из строя: инвертор, так как он не будет справляться с таким напряжением, может от этого сгореть проводка и так далее. Поэтому следует проводить правильный монтаж, учитывать все факторы.

Самый простой контроллер для RGB-ленты на трех транзисторах

Для создания эффекта поочередного изменения RGB светодиодов ленты предлагается собрать несложную электронную схему управления. Напряжение с каждого из трех выходов автоколебательного кольцевого мультивибратора поочередно поступает на вход R, G или B полосы светодиодов. В определенный момент времени горит только красный, зеленый либо синий цвет. Длительность переключения задается параметрами задающей время цепи из резистора и конденсатора.

Необходимые детали, инструменты

Для изготовления нужно по 3 радиоэлектронных элемента:

  • Полевой n-канальный МОП-транзистор типа IRFZ44. Применяется в регулируемых источниках тока, стабилизированных преобразователях, системах управления, контроля электронных узлов и блоков.
  • Алюминиевый электролитический конденсатор емкостью 2,2 микрофарады с рабочим напряжением не менее 25 вольт. Номинальные параметры указаны на корпусе.
  • Постоянный резистор с мощностью рассеивания тепла не меньше 0,125 ватт и активным сопротивлением 1 мегомов.

Узел подключается к светодиодной трехцветной ленте типа SMD5050 или аналогичной с 12-вольтным питанием. На полосе размещены модули, каждый из которых содержит 3 трехцветных диода. Соответствующие клеммы цвета и питания, соединяясь параллельно, выведены на точки подключения на полотне. Управляющие сигналы каждого свечения поданы на светодиоды через персональный токоограничивающий резистор. Параллельно соединенные модули размещены на ленте длиной до 5 метров.
Для надежного соединения радиодеталей подойдет любой паяльник. Придать выводам удобную для работы форму, выгнуть их и отрезать до нужной длины помогут плоскогубцы, кусачки или нож. Узел работает от постоянного источника тока 12 вольт.

Сборка схемы контроллера

Деталей мало, поэтому удобно сделать монтаж навесным способом, когда элементы припаивают непосредственно друг к другу без промежуточных контактов, опор или сборочных плат.

Кристалл транзистора размещен внутри пластмассового корпуса. Расположенный по центру «Сток» соединен также с большим металлическим теплоотводом. Обычно он используется для крепления к стенке электронного блока. Металл радиатора легко лудить, поэтому удобно использовать его как контактную площадку для припаивания сопротивления.
Второй его конец соединяется с выводом «Затвор» следующего элемента.
Аналогично подключается третий транзистор, но его «Сток» соединятся через резистор с электродом «Затвор» первого каскада, образуя кольцо.

Конденсатор включается между электродами «Затвор» и «Исток» каждого транзистора. Предварительно необходимо правильно определить полярность компонента по маркировке на корпусе. Обычно отмечен отрицательный электрод, который паяем на «Исток».

Отрезком провода соединяются между собой «Исток» всех транзисторов, создавая шину подключения клеммы «минус» блока питания. Жесткие электроды транзисторов легко раздвинуть и придать устойчивую форму, чтобы избежать случайных коротких замыканий.

На светодиодном полотне обозначены точки включения «R», «G» и «B». Отрезками изолированного провода каждая из них подключается к «Сток» одного из транзисторов.

«Плюс» источника тока соединяется с клеммой «+» ленты, «минус» припаивается к шине «Исток» транзисторов.
Собранный из исправных деталей при полном соответствии монтажа принципиальной схеме контроллер начинает работать после включения без необходимости предварительной настройки или подбора параметров элементов. Частота переключения уменьшится при увеличении номинала емкости и наоборот.

Что собой представляет управляющий контроллер?

Данное устройство отвечает за работу каждого потребителя, а также руководит работой электроприборов, входящих в умный дом. Контроллер позволяет отправить сигнал владельцу о текущем состоянии разных модулей. Изделие программируется в соответствии с пожеланиями владельца, для выполнения заданных действий. Для большего удобства можно настроить определенный рабочий график. Устройство может действовать в автономном режиме, когда владельца нет в квартире. Для осуществления корректной работы используют:

  • смартфоны;
  • радиопередатчики;
  • компьютерные сети.

покупка контроллеров происходит в соответствии с выбранной архитектурой центра управления.

Принцип работы устройства

Популярные системы для управления электроприборами обязательно должны иметь собственный контроллер. Именно он отвечает за выполнение сценариев в автоматическом режиме. Настройка выполняется путем активации различных механизмов, призванных облегчить жизнь человека. С помощью устройства удается контролировать выполнение задач, которые были предустановлены для умного дома, либо установлены самим владельцем. Поэтому важным пунктом остается наличие обратной связи. Контроллер отвечает за датчики, установленные в помещении, которые связаны с ним аппаратно. Пользователю остается выбрать подходящий режим работы.

Польза сведений, передаваемых устройством, зависит от потребностей владельца. Некоторым обывателям часть опций просто не нужна, но более продвинутые пользователи обязательно оценят обширный функционал. В процессе настройки оборудования важно также решить вопрос о том, насколько автоматизированным будет сценарий работы. Далеко не всегда есть необходимость уточнить текущее давление воды или напряжение.

Входы и выходы контроллера

Каждое устройство оснащается функциональными разъемами. Так вход выступает в качестве шлюза для подключения различных модулей, отвечающих за отправку информации На него. Выходы выступают разъемами, позволяющими передавать сигналы С контроллера, чтобы выбранный модуль изменил свои текущие показатели. Эти разъемы могут относиться к дискретным или аналоговым. Первые отличаются двумя возможными положениями:

  • сигнал;
  • нет сигнала.

В логическом эквиваленте это выглядит как 0 или 1. От объемных сенсоров поступает импульс на вход контроллера именно так, ведь движение либо есть, либо нет. После этого устройство генерирует обратный импульс в соответствии с заданным режимом работы.

Аналоговый тип входа позволяет различать не только текущий тип импульса, но и определяет значение. Поэтому такие разъемы используются для сенсоров влажности. Выход аналогового типа передает сигналы лампочкам, обеспечивая изменение освещенности в помещении.

Типы связи контроллеров

Контроллер позволяет построить оборудование для домашней автоматизации работы электроприборов. Для этого устройство принимает сигналы и транслирует импульсы на выбранные модули. Осуществить связь можно разными способами:

  • Удаленно;
  • Локально.

Также различие заключается в том, какой метод передачи используется – беспроводной или проводной. В первом случае локальная связь обеспечивается посредством:

  • Радиопередатчика;
  • Wi-Fi;

Настраивать текущее положение системы можно из любого помещения, а также находясь за пределами здания. В помещениях, где используются экранирующие элементы, дополнительно устанавливают радиоточки.

Удаленно поддерживать связь в беспроводном режиме удается при помощи подключения к интернету, а также посредством использования устройств расширения связи. Это позволяет гарантировать стабильный доступ к контроллеру. С этой целью применяются:

  • GSM/GPRS;
  • Мобильный интернет;

Даже в случае отсутствия подключения к глобальной сити, у пользователя сохраняется возможность отправить или получить сообщения на смартфон. Кроме последнего, для осуществления связи используют планшеты и ноутбуки.

Локальная связь проводного типа считается устаревшим способом, поэтому встречается редко. Такой вариант обладает превосходной надежностью. Для связи потребуется установленный кабель или проложенная ранее проводка. Такое подключение подходит для центральных и региональных элементов управления. Расширить функции удается путём включения коммутатора, создающего дополнительные ответвления.

Удаленная связь проводного типа сегодня остается дорогим методом, так как для установки потребуется проложить большой объем кабеля. Стоимость связи будет расти в зависимости от удаления блока управления от его контроллера. Метод используют государственные структуры, которые нуждаются в надежном управлении близлежащими территориями. В домашних условиях связь этого типа не используют.

Варианты конфигураций

Повышение производительности работы электроприборов и их автоматизации ведет к тому, что человек разрабатывает более совершенные механизмы, отвечающие за подобную функцию. Стремление связано с желанием уменьшить массу и размеры каждого устройства. Но функциональность контроллеров не должна от этого страдать. К устройствам управления современного типа устанавливают ряд требований:

  • Высокая автоматизация;
  • Самоконтроль за выполнением текущих задач;
  • Простота управления и четкое следование сценарию.

Внедрение инновационного оборудования значительно упрощает многие процессы бытового уровня. Контроллеры принимают в этом непосредственное влияние. К ним можно подключить широкий диапазон модулей, среди которых:

  • Климатическое оборудование;
  • Регулировка освещения;
  • Сигнализация и безопасность;
  • Медиасистемы;
  • Водоснабжение и отопление.

Для обеспечения управления домом потребуется распределенная или центральная система. Первую еще называют шинной. Такое оборудование отличается широким применением. Изначально устройство изготавливалось для использования в умном доме. Известные производители:

  • BTicino;
  • Jung;

Среди преимуществ распределенного комплекта стоит отметить:

  • Расширяемость. Пользователю достаточно приобрести различные модули, которые включаются в шину и настраиваются без лишних усилий, чтобы повысить функциональность умного дома;
  • Рынок переполнен производителями и качественной продукцией, которая хорошо соотносится между собой;
  • Оборудование обладает высоким качеством, поэтому и система будет надежной. В случае отключения одного из элементов, остальное оборудование продолжит свою эксплуатацию.

Альтернативой выступает центральная система. Она отвечает за управление с помощью центрального контроллера. Поэтому все модули должны быть подключены к единому центру управления. Каждый сенсор подключается к контроллеру, поэтому от них должны исходить соответствующие провода.

Достоинства такой конфигурации в следующем:

  • Можно воспользоваться любыми выключателями и датчиками, что снижает стоимость умного дома;
  • Наличие минимальных навыков программирования позволит владельцу системы лично настроить ее работу. Поэтому нет необходимости приобретать новое ПО;
  • Для интеграции можно пользоваться различной техникой.

Создаем контроллер умного дома самостоятельно

Создание сети домашних электроприборов не требует особых умений и познаний. Поэтому пользуясь простой инструкцией можно будет подготовить рабочий контроллер, отвечающий за выполнение выбранного сценария. Рассмотрим создание на примере контроллера Z-5R.

Для работы потребуется использовать:

  • Замок;
  • Блок питания;
  • Считыватели;
  • Кнопка выхода.

Ток блока питания определяется от модели замка, которую планируется использовать. Так в случае с электромагнитными устройствами достаточно 1А, а для электромеханики не обойтись без блока на 3-4А. Уточнить уровень расхода энергии позволяет уточнить паспорт изделия, который должен идти в комплекте с любым качественным замком.

Для работы контроллера можно использовать нормальнооткрытые или нормальнозакрытые замки. Для соответствующего устройства потребуется и джампер, который крепится на плату контроллера.

В процессе работы применяются диоды 1N5400, 1N5408 или схожие представленным. Расположить диоды можно на контактах, но чем ближе к замку они находятся, тем более высоким будет уровень защиты.

Контроллер должен иметь и кнопку выхода. Умный дом vera предполагает использование любой кнопки с Normally Open контактом. Продолжительность открывания замка не ограничивается. При использовании устройств SOKOL-ZS и LC у пользователя также будет возможность ограничивать сроки открывания с помощью программирования.

Считыватели подключаются к контроллеру при помощи витой пары. В данном случае выбор следует останавливать на устройствах с Dallas Touch Memory, так как именно этот протокол будет использоваться в процессе работы контроллера.

Контроллер для ветрогенератора: зачем нужен и как работает

Без контроллера ветровая установка не будет адекватно функционировать. Устройство выполняет такие задачи:

  • контроль вращающихся лопастей ветряка (регулировка энергии);
  • контроль заряда АКБ, которые накапливают собираемую ветряком энергию;
  • преобразование переменного тока в постоянный, чтобы питать аккумуляторы;
  • распределение электричества (отталкиваясь от уровня заряда аккумуляторов и количества полученной энергии).

Ветровые установки бывают большой и малой мощности. Для высокомощных ветрогенераторов в комплект к контроллеру идет балластное сопротивление (трубчатые электронагреватели и другие виды резисторов с высоким уровнем сопротивления). Плюс, при превышении мощности в АКБ до 15В прибор перенаправляет заряд с аккумуляторов на балласт.

Для маломощных ветровых генераторов контроллер служит своеобразной страховкой от перенапряжения. При полном заряде аккумуляторов он тормозит вращение лопастей ветрогенератора, чтобы прекратить активную выработку энергии. Так АКБ не пострадают от перегрузок, а электричество будет распределено равномерно. Это увеличит срок службы электроприборов, в том числе и аккумуляторных батарей.

Технические характеристики

При покупке контроллера заряда для ветрогенератора необходимо внимательно изучить его техпаспорт. При выборе важны характеристики:

  • мощность — должна соответствовать мощности ветровой установки
  • напряжение — должно соответствовать напряжению АКБ, установленных на ветряк;
  • макс. мощность — обозначает максимально допустимую мощность для модели контроллера;
  • макс. ток — обозначает, с какими максимальными мощностями ветрогенератора может работать контроллер;
  • диапазон напряжения — показатели макс. и мин. напряжения АКБ для адекватной работы устройства;
  • возможности дисплея — какие данные об устройстве и его работе выводятся на дисплей у той или иной модели;
  • условия эксплуатации — при каких температурах, уровне влажности может работать выбранное устройство.

Если вы не можете подобрать устройство контроля заряда самостоятельно, свяжитесь с консультантом и покажите ему технический паспорт своего ветряка. Прибор выбирается в соответствии с возможностями ветровой установки. Неправильные условия эксплуатации и отклонения от диапазона напряжения пагубно скажутся на работе всей ветровой системы.

Контроллер для ветрогенератора

Принцип действия

Для различных типов ветровых генераторов используют различные виды и конструкции контроллеров, но основные принципы работы подобных устройств, можно разделить на два типа, это:
  1. Для ветровых установок относительно не большой мощности: при достижении напряжения на клеммах аккумуляторных батарей выше 15,0 В, контроллер перемыкает обмотки генератора, что приводит к остановке вращения лопастей ветровой установки. При снижении напряжения до 13,5 В, контроллер дает команду на разблокировку обмоток, и установка начинает работать в нормальном режиме.
  2. Для мощных ветровых установок – в комплекте с электронным блоком контроллера монтируется балластный резистор с большим сопротивлением. При достижении напряжения на клеммах аккумуляторов в 14,0 – 15,0 В, контроллер не отключает ветровую установку, а «лишнюю» энергию сжигает на балластном сопротивлении. В качестве балласта могут быть использованы нагревательные элементы (ТЭНы), служащие для нагрева воды в системах горячего водоснабжения или отопления зданий и сооружений.

Основные характеристики

При выборе контроллера, используемого в схемах ветровых генераторов, необходимо изучить технические характеристики данного электронного устройства.

Основными характеристиками, которые указывает производитель, служащими критериями выбора подобных устройств, являются:

  • Номинальное напряжение, измеряемое в Вольтах;
  • Рабочая мощность, измеряемая в Ваттах;
  • Максимальная мощность, измеряемая в Ваттах;
  • Максимальный ток, измеряемый в Амперах;
  • Сброс балластной энергии (что может быть использовано);
  • Условия эксплуатации (рабочая температура, влажность, высота над уровнем моря);
  • Способность к дистанционной передаче данных о работе ветровой установки;
  • Габаритные размеры;
  • Вес устройства.

Виды

В настоящее время отечественные и зарубежные компании, специализирующиеся на производстве альтернативных источников энергии, а также их комплектующих, выпускают несколько видов контроллеров, успешно работающих в ветровых установках, это:

  • PWM (ШИМ) контроллеры – устройства с широтно-импульсной модуляцией (ШИМ). В аппаратах данного вида осуществляется процесс управления мощностью, путём изменения импульсов, при постоянной частоте.

Достоинствами данного вида являются:

  • Относительно не большие габаритные размеры, в сравнении с аналогами;
  • Способность к быстродействию в процессе работы;
  • Надежность конструкции.
  • МРРТ контроллеры – как правило используются в солнечных установках, но могут применяться и в комплекте с ветровыми генераторами. Основой работы устройств данного вида является способность определять точку максимальной мощности, которая характеризуется напряжением и силой тока в конкретный момент времени.

Достоинствами данного вида являются:

  • Являются наиболее эффективными устройствами, в сравнении с аналогами.

Основной недостаток – более высокая стоимость.

Контроллер для ветрогенератора и солнечных панелей

Для работы с ветровым генератором можно использовать контроллер, изначально предназначенный для работы с солнечной электростанцией, главным условием для этого, является наличие возможности, у конкретной модели, выполнить настройку «выхода» (load).

Ветровой генератор подключается на вход используемого контроллера, единственное, что необходимо сделать, это установить диодный мост, для преобразования переменного напряжения, вырабатываемого генератором в постоянное, на котором осуществляется работа аккумуляторных батарей.

В контроллерах, используемых в солнечных электростанциях, отсутствует диодный мост на входной группе, т.к. солнечные батареи производят постоянный электрический ток.

Аккумуляторные батареи подключаются в соответствие со схемой используемого контроллера, а на «выход» подключается балластное сопротивление, в качестве которого может быть использована любая нагрузка, единственное условие при этом – мощность нагрузки должна соответствовать мощности генератора.

После того, как контроллер включен по выше обозначенной схеме, необходимо выполнить настройки режимов работы, задающие пороги отключения и включения балласта.

Расчет контроллера

Этот момент довольно сложен и зачастую выполняется не столько именно путем расчетов, сколько подгонкой параметров балластного регулятора к имеющимся характеристикам ветрогенератора. Дело в том, что каждое устройство имеет собственные рабочие показатели, несоответствие которым не позволит контроллеру качественно выполнять свои функции. Например, если для устройства потребуется 12 вольт для начала зарядки, а контроллер собран на 24, то такая система попросту не сможет работать.

Для расчета контроллера надо снять все рабочие характеристики с генератора, т.е. проверить ветряк с установленным генератором на производительность в разных режимах работы — на слабых, средних и сильных ветрах. Учесть преобладающую скорость потока, при которой устройство будет работать практически все время. На основании этих данных выбирается напряжение, при котором открывается транзистор, переключающий устройство с одного режима на другой и наоборот.

Контроллер своими руками (схема)

Зная основы электротехники и умея работать паяльников, можно изготовить контроллер ветровой установки самостоятельно.

В настоящее время есть возможность найти различные схемы подобных устройств различных видов, мощности и прочих технических характеристик, для этого достаточно зайти в сеть интернет и обраться к поиску по требуемому заданию или найти техническую литературу в специализированных магазинах и издательствах.

Один из вариантов схемы контроллера и включение его в схему работы ветрогенератора, приведен ниже:

Данная схема отличается простотой, но способна обеспечить работу ветровой установки в автоматическом режиме.

Схемы балластного регулятора

Существует несколько базовых схем контроллеров, имеющих собственную специфику:

Прерывание по минусовому контакту

Нагрузка через транзистор подается на реле. Оно пропускает ток до достижения максимального заряда, но как только нужное значение будет достигнуто (автомобильное ВАЗовское реле отсекает 14,5 В), то реле отключает минус, а транзистор открывается и пропускает ток на балласт. Как только напряжение упадет, транзистор закрывается, а реле вновь соединяет минус и начинается зарядка АКБ. В качестве балластного потребителя обычно используется обычная лампочка.

Прерывание по плюсу

Эта схема намного проще, но действует не менее эффективно. При использовании плюсового контакта в качестве управляющего транзисторы обычно заменяют твердотельным реле типа GTH6048ZA2 или подобного. Соединение генератора и АКБ получается прямым, как и контроллер. При превышении заряда устройство автоматически подключает нагрузку к аккумулятору, обеспечивая расход излишнего заряда. При достижении критического напряжения 14,5 В реле-регулятор включает твердотельное реле, подключающее нагрузку. Схема проста и поэтому она весьма надежна.

Усложнённый вариант схемы контроллера

Этот вариант применяется для трехфазных генераторов. Схема намного сложнее, так как в ней используются микросхемы и дополнительные элементы, обеспечивающие их работу. В качестве балласта используется нихромовый резистор, намотанный на керамике.

Принцип действия устройства состоит в выпрямлении полученного от генератора трехфазного тока, который через реле поступает на микросхему. При понижении напряжения триггер переключает схему в режим загрузки, при повышении — включается балласт, отбирающий лишний заряд. Можно собрать схему как для 12, так и для 24-вольтовых устройств.

Внимание! В настоящее время на рынок поступило множество китайских контроллеров, вполне доступных по цене и способных работать с разными устройствами от 12 до 30 В. Они вполне функциональны и способны избавить от самостоятельной сборки с неясным результатом.

Источники

  • https://Energo.house/veter/vetrogenerator-bez-akkumulyatorov.html
  • https://amperof.ru/elektropribory/kontroller-zaryada-akkumulyatora.html
  • https://alter220.ru/solnce/kak-sdelat-kontroller-zaryada-akkumulyatora-svoimi-rukami.html
  • https://altenergiya.ru/accumulator/kontroller-zaryada-akkumulyatora.html
  • https://VashUmnyiDom.ru/elektropitanie/alternativnaya-energiya/kontroller-zaryada-solnechnoj-batarei.html
  • https://SdelaySam-SvoimiRukami.ru/4949-samyj-prostoj-kontroller-dlja-rgb-lenty-na-treh-tranzistorah.html
  • https://techsad.com/umnyjdom/kak-sdelat-kontroller-umnogo-doma-svoimi-rukami/
  • https://altenergiya.ru/veter/kak-gramotno-vybrat-kontroller-dlya-vetrogeneratora.html
  • https://alter220.ru/veter/kontroller-dlya-vetrogeneratora.html
  • https://Energo.house/veter/kontroller-dlya-vetrogeneratora.html

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об инженерных системах
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: