Подключение стабилизатора напряжения для дома: виды и схемы

Что такое стабилизатор переменного напряжения?

Стабилизатор переменного напряжения – это преобразующее устройство, главным назначением которого является защита электроприборов (например, холодильника, телевизора, стиральной, машинки, сплит-системы) от воздействий колебаний и скачков напряжения в питающей сети, способных привести их к поломке и выходу из строя.

Первые стабилизаторы появились в середине прошлого века. Это были устройства электромагнитного типа, работа которых основана на явлении электромагнитной индукции – возникновении электрического тока в замкнутом контуре автотрансформатора. Они не отличались высокими значениями таких показателей эффективности работы как точность стабилизации напряжения, скорость реагирования на его изменение в сети, КПД, перегрузочная способность. К тому же, даже маломощные устройства тех времен были громоздкими и тяжёлыми.

Во многих современных автоматических регуляторах напряжения (AVR – Automatic Voltage Regulator) в качестве устройства преобразования до сих пор применяется автотрансформатор. В наиболее продвинутых инверторных устройствах нового поколения используется технология двойного, бестрансформаторного преобразования электроэнергии.

В зависимости от типа напряжения питающей сети, на которую рассчитаны стабилизаторы, существуют однофазные, трехфазные и устройства, имеющие конфигурацию 3:1 («три в один»). Первые применяются только для стабилизации питания однофазных электроприборов. Трехфазные стабилизаторы предназначены для работы в трехфазных сетях для питания оборудования, рассчитанного на 380 В, но при пофазном распределении нагрузки могут быть использованы и для питания однофазных электроприборов.

Отличительной особенностью устройств конфигурации 3:1 является возможность работы в цепях с разным типом напряжения: входное напряжение трехфазное, а на выходе стабилизатора – однофазное. Их применение предпочтительно для подключения однофазных нагрузок большой мощности – это обеспечит равномерность распределения токов потребления по всем трем фазам, исключив возможность возникновения перекоса фаз.

По принципу построения защиты стабилизаторы переменного напряжения могут быть локального типа (для индивидуального подключения отдельных электроприборов) и магистрального типа, рассчитанные на подключение всей имеющейся нагрузки в помещении. Первые – это, как правило, устройства небольшой мощности для установки по месту расположения электроприбора, подключение к входной сети и нагрузке которых выполняется при помощи штепсельных соединений (вилка-розетка). В более мощных магистральных стабилизаторах (обычно, это устройства мощностью свыше 4000 ВА) для подключения предусматривается клеммная колодка.

Стабилизаторы и их роль

Наиболее уязвимы частные дома, находящиеся в небольших населенных пунктах, где практически невозможно обеспечить электроприборам качественное питание. Причина — «допотопные» советские подстанции, которые давно не в состоянии выдерживать сегодняшние нагрузки на сеть. Выход напряжения за «законные» пределы нередко провоцирует несколько неприятностей:

  • уменьшает срок службы элементов сети;
  • становится виновником сбоя в работе электроники — управляющей, контрольной;
  • значительно увеличивает потребление электроэнергии;
  • приводит к перегреву ТЭНов.

Этих последствий и чрезмерных трат можно избежать, если сделать стабилизатор напряжения своими руками. Перед тем как принять окончательное решение о том, быть или не быть самодельному устройству, с ним и его видами лучше познакомиться поближе.

Общая схема стабилизатора

Современные стабилизаторы представляют сложные устройства с электронной начинкой. Все они различаются принципом работы, но об этом поговорим позже. Чтобы понять, что такое стабилизатор, давайте на рисунке рассмотрим общее устройство узлов. По этому принципу устроены все стабилизирующие устройства.

Схема стабилизатора состоит из трансформатора Т1, установленного на входе устройства. Благодаря работе первичных и вторичных обмоток трансформатора, поступившее из сети напряжение доводится до параметров, необходимых для его стабилизации. Следующий блок РЭ представляет регулирующий элемент. Он регулирует выходное напряжение. И последний блок УЭ является управляющим. Его работа заключается в измерении напряжения нагрузки. Если оно не соответствует действительности, блок подает сигнал корректировки. По принципу этой схемы заключается работа всех стабилизаторов напряжения.

Виды стабилизаторов напряжения

В настоящее время применяются следующие виды стабилизаторов:

  • Феррорезонансные;
  • Сервоприводные;
  • Релейные;
  • Электронные;
  • Двойного преобразования.

Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.

Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.

Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.

Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.

Стабилизаторы двойного преобразования, в отличие от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.

Стабилизаторы релейного типа

В основе конструкции предусмотрено силовое реле, отсюда вытекает название. Это электронные стабилизаторы, которые состоят из:

  • Автотрансформатора. На устройстве имеется несколько напаек, то есть отводов от обмотки, формирующих вторичку с разными показателями коэффициентов трансформации.
  • Плата управления, в состав которой входит вольтметр для измерения цепи управления и входного напряжения, отвечающих за переключение режимов работы.
  • Силовые реле, предназначенные для коммутации определенных отводов вторичной обмотки с выходными контактами.
  • Индикаторы, предохранители и иные комплектующие.
Вам это будет интересно Установка импульсного разрядника УЗИП

Как работает устройство:

  1. Производится замер входного напряжения, согласно полученным результатам, с платы подается сигнал на размыкание реле.
  2. Ток от отпаек подается на вывод стабилизатора.

Схема стабилизатора напряжения предусматривает все необходимые элементы, в которой заложена плата управления для замера напряжения и управления работой реле, в том числе силовые и автотрансформатор.

Стабилизаторы тока на транзисторах

Для стабилизации тока через светодиоды можно применить хорошо известные решения:

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Например, если нужно получить ток 30 мА через 3 последовательно включенных светодиодов с прямым напряжением 3.1 В, то схему следует запитать напряжением не ниже 12 Вольт. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания – 18 мВт. Транзистор следует подобрать с максимальным напряжением Uкэ не ниже напряжения питания, например, распространенный S9014 (n-p-n).

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать ~23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Достоинства схемы – ее простота. К недостатку можно записать довольно большое падение напряжения (а следовательно и мощности) на транзисторе VT1. Это не критично при небольших токах (десятки и сотни миллиампер), однако дальнейшее увеличение тока через светодиоды потребует установки этого транзистора на радиатор.

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):

Ток через светодиоды задается подбором резистора R1. VT1 – любой маломощный. Светодиоды – Cree XM-L T6 10W (см. спецификацию) или аналогичные.

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят!!!

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Для снижения мощности правильнее было бы оставить оба светодиода, но уменьшить ток, например, до 2А – тогда мощность упадет с 20 до 12 Вт, а срок жизни светодиодов многократно возрастет. И площадь радиатора можно будет уменьшить до 600 см2.

Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:

наименование характеристики цена
IRF9510 P-channel, 100V, 4A 209 руб. / 10 шт.
IRF9Z34N P-channel, 55V, 19A 124 руб. / 10 шт.
NDP6020P P-channel, 20V, 24A 120 руб. / 10 шт.
Cree XM-L T6 10W, 3A 135 руб. / шт.

Ну а самая простейшая схема стабилизатора тока для светодиодов на полевом транзисторе состоит всего лишь из одного транзистора с закороченным накоротко затвором и истоком:

Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал “земли”. Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси. Это хорошо видно из графика выходной характеристики:

На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).

Пример самого простого драйвера тока для светодиода представлен ниже:

Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.

Сервоприводные стабилизаторы

Схема стабилизатора напряжения сервоприводного типа включает:

  • Блок защиты от перегрузки;
  • Автотрансформатор;
  • Серводвигатель с редуктором;
  • Блок управления

Сервоприводные стабилизаторы напряжения осуществляют выравнивание выходного тока посредством сервопривода, который приводит в движение коммутационные контакты – графитовые щётки. Перемещение последних в нужную позицию обмотки трансформатора осуществляется плавно без прерывания фазы и искажений синусоиды выходного напряжения. При скачках или проседаниях входного тока в пределах 10 В блок управления выдаёт команду серводвигателю, который двигает коммутационные контакты до достижения требуемых на выходе 220 В.

Схема регулируемого стабилизатора напряжения сервоприводного типа включает подвижные элементы, что снижает его надёжность и долговечность. Кроме того, устройства этого класса поддерживают достаточно узкий диапазон входного напряжения (150-260 В) и допустимой нагрузки (в пределах 250-500 Вт). В то же время, работают они практически бесшумно и обеспечивают погрешность выравнивания параметров тока не более 2-3%.

ЧИТАЙТЕ ТАКЖЕ: Выбираем электромеханический стабилизатор напряжения: принцип работы и особенности

Этапы установки стабилизатора

Подключение стабилизатора напряжения к электросети — несложная процедура, но она требует, чтобы человек немного разбирался в электромонтажных работах. Чтобы правильно и безопасно осуществить подключение, следует придерживаться нескольких несложных, но обязательных правил, о которых пойдет речь ниже. Так, действия следующие:

  • В первую очередь выбирается место установки. Современные стабилизаторы бывают настенными (подбирается место крепления) и напольными. Устанавливается агрегат после счетчика электроэнергии. Стоит отметить, что дополнительного повышения расходов энергии не стоит ждать, так как оборудование само по себе потребляет в среднем 20–30 Вт. Не рекомендуется устанавливать стабилизатор перед счетчиком — это запрещено и может вызвать проблемы с энергонадзором;
  • Большая часть стабилизаторов, в особенности напольные модели, оснащены клеммной колодкой или клеммником. Разъем представляет собой четыре клеммы, посредством которых подключаются провода: две входные (фаза и земля) — идут от распределительного щитка и две выходные (тоже фаза и земля) — к ним подключают нагрузку;
  • Стабилизатор напряжения своими руками подключить не сложно, но прежде чем приступать к работам, следует убедиться, что на агрегате нет визуальных механических повреждений, его сборка надежна, а провода качественно подключены. Далее обесточивается линия, отключается напряжение на счетчике, проверяются номинальные характеристики автомата, расположенного на входе (показатель должен быть выше, чем мощность самого стабилизатора);
  • Отключаются все потребители электроэнергии, и подключается сам стабилизатор. Здесь заводится фаза в специальный разъем под клемму;
  • Проделывается та же работа, что и в предыдущем пункте, только вместо фазы от счетчика подключается нулевой провод к разъему в приборе.

Обратите внимание! Стабилизатору требуется постоянное надежное подключение, что следует проверять не реже, чем раз в год. Бывает, что обнаруживается плохой контакт, что необходимо сразу исправлять (может потребоваться более жесткая фиксация). Если пренебречь этим, то есть вероятность возгорания изоляции, что может повлечь за собой возникновение пожара.

Что нужно для подключения

Помимо самого стабилизатора, вам понадобится ряд дополнительных материалов:

  • трехжильный кабель ВВГнГ-Ls

Сечение провода должно быть точно таким же, как и на вашем вводном кабеле, который приходит на рубильник или автомат главного ввода. Так как через него будет идти вся нагрузка дома.

  • выключатель трехпозиционный

Данный выключатель в отличие от простых, имеет три состояния:

1включен потребитель №1 2выключено 3включен потребитель №2

Можно использовать и обычный модульный автомат, но при такой схеме, если понадобится отключиться от стабилизатора, придется каждый раз полностью обесточивать весь дом и перекидывать провода.

Есть конечно же режим байпас или транзит, но чтобы перейти на него, нужно соблюдать строгую последовательность. Подробнее об этом будет сказано ниже.

С данным переключателем, вы одним движением целиком отсекаете агрегат, а дом остается со светом напрямую.

  • провод ПУГВ разных цветов

Вы должны четко понимать, что стабилизатор напряжения устанавливается строго до электросчетчика, а не после него.

Ни одна энергоснабжающая организация вам не разрешит подключиться по другому, как бы вы не доказывали, что тем самым, кроме эл.оборудования в доме, вы хотите защитить и сам прибор учета.

Стабилизатор имеет свой холостой ход и также потребляет эл.энергию, даже работая без нагрузки (до 30Вт/ч и выше). И эта энергия должна быть учтена и подсчитана.

Второй важный момент – крайне желательно, чтобы в схеме до места подключения прибора стабилизации было либо УЗО, либо дифф.автомат.

Это рекомендуют все производители популярных марок Ресанта, Sven, Лидер, Штиль и т.п. Это может быть вводной дифф.автомат на весь дом, не важно. Главное, чтобы само оборудование было защищено от утечек тока.

В ниже описываемом способе как раз и будет рассматриваться такой вариант. Ведь очень часто эти аппараты вешают на стене в комнатах, прихожих, в свободном доступе для прикосновения.

А пробой обмоток трансформатора на корпус, не такая уж и редкая вещь.

Перед установкой стабилизатора

Обратите внимание на место монтажа устройства. Чтобы оборудование работало оптимально, придерживайтесь следующих рекомендаций:
– если планируете разместить стабилизатор в ячейке рядом с распределительным щитком, выбирайте негорючую облицовку в этом месте;
– помещение, в котором будет стоять устройство, должно проветриваться, это необходимо для того, чтобы избежать накапливания и попадания влаги в прибор;
– при установке оборудования на стене оставьте зазор между ней и корпусом устройства;
– крепите стабилизатор к стене максимально надёжно и удобно, чтобы случайно его не повредить.
Мощность стабилизатора рассчитывается исходя из уровня общего энергопотребления в доме. Мощность = сила тока (в Амперах) умноженная на напряжение(220 В). Ориентиром могут стать значения номинала автомата, установленного на щитке ввода. Мощность должна быть на 30-50 % больше, чем допустимые расчетные значения, так как в процессе стабилизации выходная мощность падает.
Также следует учитывать не полную, а активную мощность напряжения.


Выбор места монтажа

Важно! Если вы решили устанавливать стабилизатор электроэнергии самостоятельно – вся ответственность за исправность прибора ложится на ваши плечи. Вы должны четко следовать всем требованиям и правилам ПУЭ.

Существует определенный список рекомендаций, касающийся выбора правильного места для установки стабилизатора электроэнергии:

  • Помещение, где планируется установка должно быть с минимальным уровнем влажности воздуха, и всегда хорошо проветренным. Такие условия необходимо соблюдать, чтобы свести к минимуму риск попадания влаги в устройство;
  • Если установка стабилизатора будет производиться в маленьких закрытых пространствах (например, в ячейке около распределительного щитка электроэнергии), заранее подумайте о том, чтобы облицовочные материалы в этой зоне не были горючими и легко воспламеняемыми;
  • Обязательно оставьте зазор не менее десяти см между коробкой стабилизатора и стеной;
  • Прикрепляя на стену стабилизатор электроэнергии, заранее позаботьтесь о том, чтобы максимально надежно его закрепить, а также чтобы его расположение было удобным для эксплуатации.
Читайте также: Основные виды и принцип работы реле времени

Ошибки подключения

Самой распространенной ошибкой в подключении однофазного стабилизатора напряжения является неправильный выбор места для установки или неправильное расположение прибора. Даже при правильном подключении схемы и соблюдении всех рекомендаций стабилизатор напряжения может перегреваться и выключаться, на дисплее будут постоянные неисправности и ошибки.

Неправильное переключение стабилизатора из рабочего режима в байпасный. Для перехода необходимо придерживаться точной последовательности. А именно:

  • Отключение от питания автоматов непосредственно на панели прибора;
  • Изменить обычное положение выключателя в «байпас», либо «транзит»;
  • Только после выполнения выше указанных действий можно заново включить автоматы.

Важно! Многие люди ошибочно недооценивают важность соблюдения таких правил, и меняют положение переключателя под напряжением, что в итоге приводит к сбоям в работе устройства или поломке.

При подключении стабилизатора использован провод с меньшим сечением. Обязательно придерживайтесь всех необходимых параметров кабеля, учитывая общую нагрузку дома.

На многожильных проводниках нет наконечников. Не экономьте на наконечниках, покупайте их сразу после приобретения однофазного стабилизатора. По правилам ПУЭ оконцеватели для многопроволочных проводников необходимы

Выбивает автомат в электрическом щитке. Бывает и такая проблема, учитывая то, что при отключении стабилизатора все нормально функционирует без сбоев. Многие люди в таких ситуациях ошибочно полагают, что прибор неисправен, или грешат на неправильное подключение схемы и отвозят стабилизатор на ремонт по гарантии. Но причина может заключаться совсем в другой проблеме. Например, у вас недостаточное напряжение в сети, 150 В, вместо положенных 220 В. Если напряжение будет в норме, ток в сети станет на порядок выше.

Обязательно обратите внимание на все проблемы, о которых сказано выше, прежде чем нести стабилизатор в магазин и заявлять о его неисправности.

Источники

  • https://www.shtyl.ru/support/articles/stabilizator-peremennogo-napryazheniya/
  • https://dom-i-remont.info/posts/elektrika/stabilizator-napryazheniya-svoimi-rukami-princzip-raboty-vidy-i-shemy/
  • https://electrifix.ru/oborudovanie/shema-podklyucheniya-stabilizatora-napryazheniya.html
  • http://nabludaykin.ru/vidy-i-sxemy-stabilizatorov-napryazheniya/
  • https://rusenergetics.ru/oborudovanie/skhema-stabilizatora-napryazheniya
  • http://electro-shema.ru/chertezhi/stabilizator-toka-dlya-svetodiodov.html
  • https://voltobzor.ru/stabilizatory/vidy-shemy-stabilizatorov-napryazheniya
  • https://ProFazu.ru/elektrooborudovanie/zaschita/podklyuchenie-stabilizatora.html
  • https://domikelectrica.ru/sxema-podklyucheniya-stabilizatora-napryazheniya/
  • https://ibp-ural.ru/montazh-stabilizatoro-v-chastnom-dome
  • https://odinelectric.ru/equipment/podkluchit-stabilizator-napryazheniya-dlya-doma

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об инженерных системах
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: