Солнечная электростанция для частного дома

Содержание
  1. Способы применения солнечной энергии
  2. Достоинства и недостатки солнечного отопления
  3. Солнечные батареи для отопления
  4. 1 Методы использования
  5. Виды и конструкция солнечных панелей
  6. Монокристаллические.
  7. Тонколистовые.
  8. Поликристаллические.
  9. Каркасные солнечные батареи
  10. Бескаркасные солнечные батареи
  11. Трубчатые коллекторные разновидности
  12. Открытые солнечные коллекторы
  13. Плоские закрытые системы
  14. Стационарные панели
  15. Мобильные модули
  16. Принцип работы.
  17. Учет окружающих факторов
  18. Эффективность
  19. Сколько нужно солнечных батарей для отопления дома
  20. Установка домашней солнечной электростанции
  21. С чего начать
  22. Где крепить?
  23. Что входит в систему
  24. Полезные рекомендации по установке
  25. Повышение эффективности солнечных модулей
  26. Выгодны ли солнечные батареи для частного дома
  27. Рейтинг ТОП 5 лучших солнечных панелей
  28. Delta SM — 150 — 12P
  29. Delta SM — 200-12P
  30. Exmork ФСМ-100П
  31. TOPRAY 100 ватт 12В
  32. Feron PS 0303 150 W
  33. Заключение

Способы применения солнечной энергии

Технологии, использующие солнечную энергию, кажутся новыми только на фоне более традиционных систем. Солнечное тепло уже давно активно перерабатывается в тепловую и электрическую энергию, особенно в тех странах, где Солнце светит круглый год. В северных странах с этим сложнее, но даже в таком случае солнечной энергии находится применение, ведь ее можно использовать как резервный энергоресурс.

Для сбора солнечной энергии используется два типа устройств:

  1. Солнечные батареи. Данные устройства накапливают собранную энергию и позволяют использовать ее для питания электрических приборов. Солнечные батареи – это панели, на лицевой стороне которых установлены фотоэлементы, а с другой стороны располагается фиксирующий механизм. Солнечная батарея для обогрева дома не очень сложна конструктивно, поэтому такие элементы иногда собирают самостоятельно, но гораздо проще и надежнее покупать готовые устройства.
  2. Солнечные коллекторы. Этот тип устройств предназначен для включения в систему отопления. Такие конструкции представляют собой теплоизолированные короба, в которых проходит теплоноситель. Коллекторы устанавливаются на крыше или специальных щитах с той стороны здания, на которую попадает больше всего солнечных лучей. Чтобы эффективность впитывания энергии была более эффективной, системы делают поворачивающимися в соответствии с направлением солнечных лучей.

Разница между коллекторами и солнечными батареями видна из их конструкции. Коллекторы (гелиосистемы) используются непосредственно для нагрева теплоносителя, в то время как батареи собирают энергию для ее преобразования в электричество. Конечно, солнечные батареи для обогрева дома тоже можно использовать, но такая схема довольно неудобна, да и требовательна к погодным условиям – для нормального обогрева солнечных дней должно быть не менее 200 в году.

Достоинства и недостатки солнечного отопления

К достоинствам солнечных отопительных систем можно смело отнести следующие качества:

  1. Экологичность. Впитывание и преобразование солнечной энергии происходит без каких-либо выбросов вредных веществ, поэтому можно говорить о полной экологической чистоте таких систем.
  2. Автономность. Солнечное тепло обходится совершенно бесплатно, что позволяет не думать о текущем уровне цен на энергоносители и необходимости их подведения к своему частному дому.
  3. Экономичность. Комбинирование традиционного и альтернативного отопления позволяет неплохо сэкономить в процессе эксплуатации. Если же использовать только солнечное отопление, то все затраты сводятся к приобретению необходимых элементов системы и их обслуживанию.
  4. Доступность. Солнечные коллекторы и батареи не нужно согласовывать с какими-либо государственными органами, поскольку работа подобных систем автономна и не представляет какой-либо опасности.

Из недостатков главным образом выделяются следующие качества:

  1. Длительный период определения эффективности. Чтобы понять, насколько солнечная система эффективна и выгодна в конкретных условиях эксплуатации, ей необходимо проработать хотя бы 3 года.
  2. Высокая стоимость оборудования. Солнечные батареи и комплектующие к ним на сегодняшний день стоят довольно дорого, поэтому без существенных изначальных вложений обойтись не удастся.
  3. Зависимость от внешних условий. Если климат в географической локации, где установлены коллекторы, не отличается большим количеством солнечных дней, то установка солнечных устройств может даже оказаться нецелесообразной.
  4. Необходимость резервного отопления. Чтобы отопительная система была надежной, ее необходимо обязательно продублировать (дублирующим контуром обычно выступает именно солнечный обогрев).
  5. Требовательность к обслуживанию. Солнечные коллекторы нужно качественно обслуживать, постоянно проводя профилактические и очистительные работы. Запуск системы при отрицательных температурах возможен только в том случае, если она и сам дом имеют надежную защиту от холода.

Если достоинства солнечного оборудования кажутся слишком важными, а недостатки не критичны, то рассматриваемые устройства подойдут для обеспечения дома электричеством и теплом как нельзя лучше.

Солнечные батареи для отопления

Использование солнечных батарей для обустройства отопительной системы имеет ряд нюансов. Все дело в том, что такие устройства главным образом предназначены для сбора энергии, которая в дальнейшем преобразуется в электрическую. Чтобы сделать отопление на солнечных батареях, нужно будет собрать систему, подключенную к накопительному баку – именно в этом элементе конструкции будет осуществляться разогрев теплоносителя.

Чтобы понять, можно ли выгодно использовать солнечные батареи для отопления дома зимой, нужно рассмотреть виды данных устройств, их эксплуатационные особенности и способы использования.

1 Методы использования

Энергию солнечного света применяют уже давно и успешно, поэтому технология не является инновацией. Но пользуются такой услугой чаще всего жители жарких стран и южных широт, так как в теплых климатических условиях добывать такой альтернативный ресурс можно круглогодично. А вот северные регионы, где существует недостаток естественного излучения, используют солнечное отопление только как дополнительный вариант.

Своеобразными посредниками между солнцем и механизмом, который образует энергию, являются солнечные батареи и специальные коллекторы. Притом эти элементы могут различаться как по назначению, так и по конструкции. Но суть их работы заключается в аккумулировании солнечной энергии для последующего использования.

Батареи представлены в виде панелей, на одной стороне которых имеются фотоэлементы, а на другой — фиксирующий механизм. Такую конструкцию вполне реально смонтировать самостоятельно, но можно приобрести уже готовые изделия, продающиеся в широком ассортименте.

Гелиосистема — прибор, который является частью системы отопления. Он представляет собой большой теплоизолированный короб, в который встроен теплоноситель. Такое устройство вместе с батареями закрепляют на приподнятом щите, обращенном к светилу. Разрешается также просто уложить обогревательные элементы на скате крыши.

Можно значительно повысить эффективность отопительной системы, если поместить батареи на специальные динамические механизмы. Эти устройства работают по принципу системы слежения, то есть поворачиваются в ту сторону, куда направлены лучи солнца.

Само преобразование осуществляется в трубах, которые расположены внутри коробки. Использовать солнечные батареи для отопления дома зимой вполне реально, но при условии, что солнечных дней в году будет не меньше двухсот.

Виды и конструкция солнечных панелей

Существует три основных типа солнечных батарей:

  1. Монокристаллические. Рабочим элементом таких устройств являются тонкие пластины, выполненные из чистого кремния, выращенного искусственным образом. КПД таких пластин в самом лучшем случае достигает 17-18%. Наиболее комфортная температура эксплуатации – от 5 до 25 градусов.
  2. Поликристаллические. Рабочий элемент – пластины, которые получается в результате постепенного охлаждения расплавленного кремния. Такой способ изготовления более прост по сравнению с предыдущим, но и КПД соответствующий – в лучшем случае он достигает 12%.
  3. Аморфные (пленочные). Для производства таких батарей кремний выпаривается и оседает тонкой пленкой на полимерной основе. Дешевизна производства и простота изготовления подобных устройств имеет прямую зависимость с эффективностью – КПД аморфных батарей не превышает 7%.

В странах с преимущественно холодным климатом чаще всего используются солнечные батареи, изготовленные с использованием монокристаллических рабочих элементов. Впрочем, выбор наиболее подходящего типа нельзя назвать очевидным – пленочные модули гораздо удобнее в установке, не предъявляют особых требований к основанию и обходятся на порядок дешевле.

Внешние элементы батарей предназначены для сбора и преобразования солнечной энергии, которая в дальнейшем будет перемещена в накопитель. Небольшие отдельные батареи вырабатывают около 100-250 Вт энергии, а сборные модульные конструкции площадь в 25-30 м2 позволяют обеспечить электроэнергией небольшое жилое здание. Чтобы использовать солнечные батареи для отопления дома, их площадь должна быть в несколько раз выше указанного значения.

Для преобразования солнечных лучей в электричество используется инвертор. Необходимость его установки связана с тем, что электрические приборы используют только переменный ток. Это же правило касается и электрического отопительного оборудования. Чтобы система обеспечивала дом энергией круглосуточно, ее необходим в обязательном порядке дополнить аккумуляторами, позволяющими запасаться электроэнергией.

Монокристаллические.

Позволяют создать наиболее эффективное отопление загородного дома солнечными батареями. Они набираются из большого количества силиконовых ячеек. При попадании солнечного потока на поверхность этих фотоэлементов, внутри активируются электрохимические процессы. В основном монокристаллические батареи содержат 36 ячеек. Это оптимальное количество позволяет создавать легкие и компактные панели. Оригинальное соединение фотоэлементов обеспечивает небольшую гибкость рамке. Благодаря этому параметру монокристаллические батареи легко устанавливаются на неровных поверхностях, обеспечивая правильный угол наклона к световому потоку. Максимальная их мощность достигается при средней температуре окружающего воздуха около 15–25 °C.

Тонколистовые.

В отличие от аналогов предоставляют ряд неоспоримых преимуществ:

  • для активации фотосинтеза необязательно обеспечивать поток света, перпендикулярно направленный на поверхность солнечных панелей;
  • благодаря этому их можно устанавливать в любом удобном пользователю месте: крыше, стене здания, на отдельной конструкции;
  • максимальные потери на тонколистовых батареях в пасмурную погоду составляют всего 15%;
  • тонкая пленка обеспечивает отличную работу панелей в условиях повышенной запыленности;
  • прекрасное отопление частного дома солнечными батареями тонколистового типа можно организовать в любом регионе.

Поликристаллические.

Для создания элементов приема солнечного потока на батареях используют поликристаллы кремния яркого синего цвета. Монокристаллические панели применяются при освещении улиц, парков, для электрического снабжения частного дома или дачи, кафе и ресторанов.

Каркасные солнечные батареи

Подложка из закаленного стекла выступает надежной защитой для листовых солнечных батарей, нанесенных на одну сторону. Дождь, снег, град не повредят источнику автономного электроснабжения. Прозрачное стекло легко пропускает свет и препятствует механическому повреждению фотоэлементов. С внутренней стороны батареи защищены слоями ламината. Используется лавсан (полиэстер).

Для дополнительной герметизации фотоэлементы утоплены в пленку, схожую по свойствам с полиэтиленом. Торцы отделываются алюминиевым профилем, посаженным на герметик, препятствуя расслоению пирога, который — начиная с внешней поверхности — выглядит так:

  1. Прочный слой закаленного стекла.
  2. Фотоэлементы, утопленные в пленку.
  3. Внутренние слои ламината.

Алюминиевый профиль имеет форму буквы F, поддерживает конструкцию на некотором расстоянии от поверхности кровли. Единственный элемент не обеспечит достаточного выходного напряжения, ряд штук соединяются последовательно. Каркасная конструкция дополняется элементами электрических соединений.

Бескаркасные солнечные батареи

В этом варианте исполнения каркас отсутствует. Подложкой выступит стеклотекстолит, либо подложка отсутствует окончательно. В последнем случае обе стороны покрываются лавсановой пленкой. Фотоэлементы тщательно загерметизированы.

Трубчатые коллекторные разновидности

Трубчатые вакуумные коллекторы относятся к более серьезным устройствам, способным обогревать жилье или иные помещения. Они состоят из следующих элементов:

  • корпус, покрытый черной краской и имеющий форму плоского ящика;
  • распределитель (или, как его иногда называют, manifold, манифольд) — трубка с несколькими присоединительными патрубкам по бокам;
  • вакуумные трубки, изготовленные из стекла.

Эффективность устройства обеспечивает наличие вакуума, теплопроводность которого практически отсутствует и позволяет исключить потери.

Существует несколько видов трубчатых коллекторов, различающихся по конструкции распределителя и трубок:

  1. Коаксиальные трубки прямого нагрева. Подготовка теплоносителя происходит при непосредственном контакте с поглощающей поверхностью
  2. Система heat-pipe. Трубки соединяются с распределителем через специальные гнезда и отдают через них нагретый теплоноситель. Конструкция удобна из-за высокой ремонтопригодности.
  3. Система U-type. Трубки имеют двойную длину и согнуты пополам. Начало соединено с одним распределителем, а конец — с другим. Такая схема позволяет увеличить время контакта с солнечным теплом, за счет чего повышается эффективность нагрева.
  4. Перьевые системы. Представляют собой модификацию системы heat-pipe, накрытую прозрачной пластиной с вакуумом под ней. Дают повышенную эффективность, но имеют высокую цену и низкую ремонтопригодность.

Монтаж трубчатых коллекторов, как правило, производят на кровлю дома.

Открытые солнечные коллекторы

Открытые конструкции являются наиболее простыми и даже примитивными. Они представляют собой емкости, обычно черные узкие продолговатые пластиковые лотки, наполненные водой. Они ничем не накрыты, вода находится на открытом воздухе (отсюда и название).

Такие конструкции имеют массу недостатков:

  • возможность давать положительный эффект только при плюсовых температурах;
  • необходим относительно небольшой перепад температур в коллекторе и внешней среде;
  • долговечность таких установок низка — как правило, один сезон;
  • как следствие вышесказанному — крайне низкий КПД.

Для решения серьезных задач подобные установки использовать невозможно, поэтому они применяются для подогрева воды в открытых или передвижных бассейнах, летнем душе и т.п. однако, есть и достоинства — подобные устройства очень просты. Обогреватель от солнечной батареи легко может быть изготовлен самостоятельно, а в регионах с подходящими климатическими условиями его возможности заметно расширяются.

Плоские закрытые системы

Солнечное отопление дома с помощью плоских систем позволяет получить высокую эффективность при относительно низких затратах. Конструкция базируется на специальной утепленной металлической пластине с поглощающим покрытием, которая называется адсорбер. На пластину зигзагами напаяна трубка с теплоносителем. Лицевая сторона накрыта прозрачной крышкой, из-под которой выкачан воздух. Солнечный обогреватель такого типа способен работать даже при отрицательных температурах. Это позволяет обеспечивать отопление дома солнечными батареями зимой, отзывы пользователей позволяют делать достаточно оптимистичные прогнозы о будущем такого способа обогрева.

Существуют более простые виды плоских коллекторов, где не имеется вакуума. Они менее эффективны, но стоимость и ремонтопригодность значительно выше. Отопление на солнечных батареях плоского типа безвакуумной конструкции обойдется значительно дешевле, а возможность восстановления панелей увеличивает срок их службы.

Стационарные панели

Солнечные панели могут использоваться как в стационарных условиях, так и быть переносными.

Фиксированные модули применяются в следующих областях:

  • на солнечных электростанциях;
  • в автономных, резервных или гибридных электростанциях для дома или дачи;
  • для обогрева помещений и нагрева воды (солнечный коллектор);
  • в автономных системах освещения улиц;
  • для питания рекламных щитов;
  • в системах навигации и сигнализации;
  • в насосных станциях и др.

Рассматривая стационарные солнечные электростанции, остановимся подробнее на тех, которые используются для электроснабжения дома. Чтобы обеспечить жилище электричеством с помощью энергии Солнца, понадобятся следующие комплектующие:

  • солнечные модули;
  • аккумулятор (для накопления неизрасходованной энергии);
  • контроллер напряжения (увеличивает срок службы аккумулятора, но не обязателен для установки);
  • инвертор (преобразует постоянный ток аккумулятора в необходимый переменный ток для электроприборов).

Домашние солнечные электростанции по отношению к централизованному электроснабжению могут быть:

  • автономные.

Автономные, т.е. независимые от других источников питания, солнечные электростанции используются там, где невозможно по определенным причинам (значительная удаленность от населенных пунктов) подключение к общей электросети. Их использование целесообразно в южных районах, где длиннее световой день и большое количество ясных дней. В любом случае ее желательно продублировать генератором на горючем топливе. Основные преимущества автономной станции – это ее экологичность, бесшумность, минимальное техническое обслуживание в течение эксплуатации. Минус – ночью или в пасмурные дни электроэнергия вырабатываться не будет. Кроме того для их работы необходимы выше названные комплектующие, которые делают автономную систему довольно дорогой.

  • резервные.

Резервные, или сетевые, электростанции устанавливаются там, где есть подключение к центральной электрической сети. Она используется, как дополнительный источник электроэнергии. Резервная солнечная электростанция начинает свою работу в случае перерыва подачи электроэнергии от сети. Преимущества – бесшумность, надежность, возможность монтажа на крышу или фасад здания. Также плюсом является отсутствие аккумулятора, контроллера и инвертора, что значительно удешевляет систему.

  • гибридные.

По сути, представляет собой автономную станцию, подключенную к электрической сети. Энергия, полученная от Солнца, используется в первую очередь, при ее нехватке подача электроэнергии идет уже от централизованного электроснабжения. Позволяет значительно экономить на платежах за потребленную электроэнергию.

Мобильные модули

Мобильные устройства по преобразованию энергии Солнца в электрический ток могут применяться:

  • для зарядки мобильных телефонов и других мобильных устройств;
  • для питания радиоприемников во время походов, рыбалки;
  • для питания систем навигации во время экспедиций;
  • для освещения в темное время суток во время походов.

Портативные батареи стали незаменимым аксессуаром у любителей загородных поездок и туристов, путешествующих по диким местам, в которых отсутствует электричество. Так как современная жизнь даже на необитаемом острове или в горах невозможна без различных гаджетов, их подзарядка производится от зарядных устройств, преобразующих солнечную энергию. Портативные солнечные батареи чаще всего выпускаются на основе монокристаллического кремния. Они различаются размерами, формой, мощностью. Компактные батареи с небольшой мощностью могут поместиться в кармане, а большие и мощные могут быть установлены на крыше автомобиля. Кроме того они снабжены всевозможными переходниками для подключения различной техники.

Принцип работы.

Специальные панели с большим количеством фотоэлементов поглощают энергию солнечного потока. При попадании лучей на поверхность принимающих устройствах, в них активируется электрохимическая реакция. Выделяемая каждым элементов электрическая энергия концентрируется и выводится на общий накопитель.

С одной солнечной панели стандартных размеров выводится около 250 Вт. Вследствие этого понятно, что для обеспечения нормального функционирования загородного дома необходимо объединить несколько панелей в единую систему. Практические данные показывают, что площадь солнечных батарей 20–30 кв.метров вполне достаточно для полноценного функционирования электрических приборов в доме обычной семьи.

Понятно, что в ночное время фотосинтез на солнечных батареях не протекает. Вследствие этого для накопления электроэнергии необходимо наличие аккумуляторов. Количество их напрямую зависит от интенсивности расхода электричества в темное время. Подзарядка аккумуляторов осуществляется за счет избыточной электроэнергии, вырабатываемой при фотосинтезе в светлое время суток.

Для преобразования постоянного тока, полученного в результате синтеза солнечного потока, в рабочее электричество в комплекте оборудования предусмотрен инвертор. Все современные электроприборы функционируют от переменного тока. Электрические котлы также работают на этом виде электричества.

Учет окружающих факторов

Солнечные обогреватели для дома оптимально работают при следующих условиях:

  • при температуре +25С;
  • при световом потоке 1000 Вт/м2;
  • в спектре АМ 1,5.

Аббревиатура АМ обозначает спектр Солнца, который наблюдают в средних континентальных широтах США. Именно исходя из них, принято испытывать параметры всех солнечных систем. Широта АМ находится в южном направлении от Москвы и в российских регионах ее принято обозначать там, где расположены Ростов-на-Дону или Волгоград.

Эффективность

Чтобы использовать солнечную энергию для отопления частного дома, гораздо проще будет собрать схему из коллекторов – но такая возможность есть не всегда, поэтому приходится рассматривать иные варианты. Например, вполне может быть так, что на участке уже установлена рабочая система из солнечных батарей, которая используется только для обеспечения дома электричеством и горячей водой.

Приобретать новое оборудование при таких условиях будет слишком невыгодно ввиду его высокой стоимости. Чтобы обеспечить обогрев дома солнечными батареями, оптимальным решением будет увеличение мощности системы модулей. Самый простой вариант – приобрести несколько дополнительных кремниевых панелей и подключить к системе отопительного котла, работающего за счет электричества.

Грамотное распределение электрической энергии позволит обеспечить как систему горячего водоснабжения, так и отопительный контур. Чтобы мощности хватало на все, потребуется немало солнечных батарей – автономные здания, использующие только солнечную энергию, обычно полностью покрыты фотоэлектрическими панелями. Мощность солнечных батарей нужно считать заранее. Зачастую приходится достраивать дополнительную конструкцию, на которую будут устанавливаться панели.

Определить эффективность солнечной системы до ее использования не получается, поэтому все расчеты получаются лишь приблизительными. Сложность предварительных расчетов связана с тем, что есть масса факторов, просчитать влияние которых на эффективность сбора энергии невозможно. Конечно, при наличии некоторого опыта можно провести более-менее точный расчет, но такой опыт есть лишь у профессионалов, специализирующихся на проектировании и установке солнечных систем.

Наибольшее влияние на эффективность системы оказывают следующие факторы:

  • Нестабильность погоды – определить заранее количество солнечных дней невозможно даже в солнечных регионах, не говоря уж о северных краях;
  • Нестабильное потребление энергии, которое также зависит от географического расположения здания, получающего тепло и электрическую энергию за счет солнечного света;
  • Возможность выхода системы из строя – сложность конструкции свидетельствует о том, что она будет нередко ломаться, причем определить неисправность в некоторых случаях бывает затруднительно.

Узнать о том, насколько эффективны солнечные батареи, можно только после того, как они уже некоторое время использовались. По результатам анализа работы системы можно будет решить, есть ли необходимость в установке дополнительных фотоэлементов или аккумуляторов. Кроме того, стоит также оценить несколько дополнительных параметров – например, если потери тепла слишком велики, то оптимизировать работу системы можно за счет улучшения теплоизоляции всего дома.

Сколько нужно солнечных батарей для отопления дома

Казалось бы, все просто. На обогрев небольшого загородного коттеджа площадью 100 м² пойдет приблизительно 10 кВт = 10 000 Вт тепловой энергии. Это 100 панелей по 0.1 кВт или 34 больших модуля по 300 Вт. Столько батарей на крышу дома не поставишь, а о квартире и речи нет.

Справка. Размер 1 фотоэлектрического элемента мощностью 100 Вт, изготовленного по поликристаллической технологии, составляет около 1020 х 700 мм или 0.71 м². Аналогичная батарея на 300 Вт займет 1.68 м² (170 х 99 см).

Сразу оговоримся, полученный результат – неправильный, поскольку не учитывает особенности эксплуатации солнечных энергетических систем:

  1. Фотоэлектрический модуль выдает максимальную мощность, когда лучи падают под углом 90° к плоскости батареи. Если не сделать трекер – следящий механизм, поворачивающий панель вслед за движением солнца, потеряем около 40% энергии. С другой стороны, подобное устройство тоже расходует электричество.

    Трекер поворачивает модули вслед за светилом, обеспечивая угол падения лучей 90°

  2. Величина солнечного излучения на 1 м² – инсоляция – зависит от региона проживания, высоты над уровнем моря, затененности участка. Перечисленные факторы напрямую влияют на производительность батарей.
  3. С течением времени полупроводниковое покрытие модулей деградирует, в результате теряется примерно 1% электрической мощности ежегодно.
  4. Если фотоэлектрический слой перегревается солнцем, производительность панели тоже уменьшается.
  5. Малая толика энергии теряется в сопутствующем оборудовании – инверторах, контроллерах, АКБ. Это банальный нагрев деталей – трансформаторов, микросхем и прочих элементов.
  6. Когда рабочая поверхность загрязняется пылью либо засыпается снегом, возникают дополнительные потери.
  7. Заметьте, для отопления солнцем зимой вырабатываемого электричества должно хватать на обогрев дома и зарядку аккумуляторов на ночь.

Вывод. Универсального расчета электрической мощности батарей, подходящего ко всем странам и регионам, не существует. Но озвученную выше цифру 10 кВт нужно удвоить (как минимум), чтобы получить пристойный результат на практике. Понадобится от 200 стоваттных панелей, занимающих площадь свыше 140 м².

Есть надежный способ получить точные данные по инсоляции и рассчитать производительность солнечных батарей – обратиться в местную организацию, занимающуюся их монтажом. Либо самому изучать карту инсоляции района.

На карте видно, что центральные регионы РФ получают довольно мало радиации солнца – в среднем 3–3.5 кВт на метр квадратный за день

Установка домашней солнечной электростанции

Самое простое решение, которое сразу приходит на ум – обратиться в компанию, которая специализируется на продаже и установке солнечных генераторов. Такое решение имеет массу преимуществ – специалисты смогут подготовить индивидуальный проект, наиболее подходящий для конкретных условий эксплуатации, а на приобретенное и установленное оборудование будет выдана гарантия. Недостаток подобного решения – слишком высокая стоимость работ.

Впрочем, собрать домашнюю солнечную электростанцию можно и самостоятельно, но для этого потребуется немалый опыт, а также солидные затраты труда и времени. Кроме того, нужно будет разобраться в том, какие элементы нужны для обустройства системы, и как они взаимодействуют между собой.

Набор элементов для монтажа солнечного отопления выглядит следующим образом:

  • Комплект солнечных модулей;
  • Аккумуляторная батарея;
  • Контроллер заряда;
  • Инвертор;
  • Коммутация.

Аккумуляторы желательно подбирать так, чтобы у них были одинаковые характеристики. Хорошие аккумуляторы могут удерживать энергию около 3-4 дней, и этот параметр тоже нужно учитывать, как и тот факт, что в холодном помещении устройства разряжаются намного быстрее. Для суточного потребления в 2400 Вт-ч суммарная емкость батарей должна составлять не менее 1000 А-ч.

Инверторы, используемые для солнечных систем, имеют возможность синхронизировать фазу напряжения, в результате чего перевод 12 В в 220 В осуществляется без малейших задержек, поэтому электрические приборы не испытывают лишних нагрузок. Централизованные электросети таким качеством похвастать не могут, поэтому солнечные генераторы в этом плане гораздо удобнее и надежнее.

Смонтировав каждый элемент системы, работающей на солнечных батареях, необходимо закончить работу. Для этого нужно подключить к системе электрический накопитель, в котором будет происходить нагрев воды от солнца. Накопитель в дальнейшем соединяется с отопительным контуром здания, тем самым обеспечивая его обогрев – например, вполне можно запитать теплый пол от солнечной батареи достаточной мощности.

С чего начать

Подсчет затрат электроэнергии. Для установления необходимой мощности системы солнечных панелей, нужно подсчитать, сколько электричества вы расходуете. Очень многое в этом вопросе зависит от того, используется ли частный дом постоянно или только как дача в определенные сезоны года. Для подсчета возьмите квитанции по оплате за электроэнергию за год и установите общее количество киловатт, затраченных за этот период, затем разделите на 12 (количество месяцев) – вы получите среднемесячный расход электроэнергии.

Расчет среднемесячного расхода потребляемого электричества

Как показывает опыт и отзывы реальных потребителей, в средней полосе России полученный результат необходимо умножить на коэффициент 16, чтобы получить необходимую мощность батарей в Ваттах.

Рассмотрим пример. За год вы потратили 1625 кВт, делим эту цифру на 12 месяцев и умножаем на коэффициент 16 – получается, 2166 Ватт. Т.е. система солнечных батарей будет обеспечивать такой дом, если ее мощность будет не менее 2200 Ватт/час

Где крепить?



Крыша. Закрепление солнечных батарей на крыше – очевидное, но не всегда лучшее решение для частного дома. Направленный на юг скат крыши действительно обеспечивает наилучший результат из стационарных способов крепления солнечных батарей, но на этом варианты не ограничиваются.

При таком закреплении скат крыши должен быть на ЮГ

Стены. Если стена «смотрит» на юг – она отлично подходит для размещения на ней солнечных батарей. Понаблюдайте, не падает ли на стену тень от деревьев, хозяйственных построек, забора, иных объектов. Не размещайте солнечные панели в этих местах.

Желательно также использовать южную стену

Не стоит ставить панели на восточной или западной стенах. Таким образом, в самый интенсивный период светового дня вы будете получать на свои панели только косые лучи, что значительно снижает эффективность системы

Свободное размещение. Самый эффективный вариант размещения солнечных батарей, но требует свободной площади во дворе. При свободном размещении солнечных батарей в частном доме их можно закреплять на шарнирах и таким образом, направляя их поверхность к солнцу под 90°.

Такое расположение батарей позволяет получить от них максимум мощности

Что входит в систему

Солнечные панели. О том, как их собрать, мы писали в этой статье (откроется в новом окне). Вы можете купить готовый комплект солнечных батарей для дома, но для экономии средств можно приобрести поликристаллические фотоэлементы и собрать солнечные батареи для своего дома своими руками.

Инвертор. Солнечные батареи вырабатывают постоянный ток, близкий к 12 или 24 вольтам (в зависимости от подключения), инвертор преобразует его в переменный 220 В и 50 Гц, от которого можно питать все бытовые приборы.

Аккумулятор. Даже их система. Солнечная энергия вырабатывается не постоянно. В пиковые часы её может быть переизбыток, а с наступлением сумерек её выработка прекращается вовсе. Аккумуляторы накапливают электричество в течении светового дня и отдают его вечером/ночью. Как выбирать аккумулятор для солнечной электростанции написано в этой статье (откроется в новом окне).

Важно знать. Не рекомендуется использовать для этих целей обычные автомобильные аккумуляторы – они приходят в негодность за 2-3 года эксплуатации (на такой срок службы они и рассчитаны)

Контроллер. Обеспечивает полный заряд аккумуляторной батареи и защищает её от перезарядки и закипания. О том, какой контроллер выбрать мы писали в этой статье (откроется в новом окне).

Полезные рекомендации по установке

Что касается тонкостей монтажа, при установке лучше укладывать панели параллельно, на крыше. При монтаже следует учитывать как географическое, так и сезонное положение Солнца. От этого зависит количество солнечного света и тепла, которое будет накапливать гелиосистема. Если вы планируете разместить панели в несколько рядов, следите за тем, чтобы один ряд не отбрасывал своей тени на другой.

Для повышения КПД лучше сразу позаботиться о приобретении солнечного трекера. Это устройство всегда входит в комплектацию лучших гелиосистем. Оно предназначено для того, чтобы следить за движением Солнца по небосводу и поворачивать фотоэлементы вслед за ним. Благодаря этому нагрев панелей всегда будет происходить интенсивно и равномерно, что позволит максимально использовать их потенциал.

Перед установкой модулей необходимо просчитать, какое количество электроэнергии потребляет отопительный контур. Это поможет для определения максимальной производительности солнечных батарей.

При наличии технических навыков можно попытаться установить систему самостоятельно, но при возникновении сложностей лучше обратиться к опытному мастеру.

Если вы планируете оборудовать дома гелиоустановку, подумайте над оборудованием системы «теплого пола». Такой контур обеспечивает более равномерное распределение и бережный расход тепла, чем «классические» батареи в форме радиаторов.

Повышение эффективности солнечных модулей

Эффективность солнечных систем можно повысить, воспользовавшись одним из следующих способов:

  1. Смена расположения модулей. Иногда для повышения КПД достаточно будет правильно расположить модули относительно вектора направленности солнечных лучей. Обычно для этого нужно развернуть все модули на юг. Если день в регионе долгий, можно также использовать поверхности, направленные на восточную и западную сторону – там тоже хватает света, который преобразуется в энергию.
  2. Изменение угла наклона. В документации к модулям всегда указывается рекомендуемый угол наклона, при котором КПД системы будет максимальным. На практике это значение может существенно варьироваться в зависимости от географического местоположения и других индивидуальных особенностей.
  3. Выбор места для установки. Чаще всего солнечные модули устанавливаются на крыше здания – это самый простой, доступный и очевидный вариант, но не самый эффективный. Лучше всего будет заранее подготовить поворотное основание и установить панели на него, чтобы устройства следовали за солнечными лучами по мере их смещения.

На последний пункт стоит обратить особое внимание. Конечно, установленные на крыше модули не бесполезны – в конце концов, никаких препятствий для солнечных лучей в таком случае нет, поэтому они легко достигают устройства и преобразуются в необходимый тип энергии. Проблема в том, что расположение модулей перпендикулярно солнечным лучам имеет максимальную эффективность на протяжении короткого промежутка времени.

Поворотные устройства, отслеживающие текущую направленность лучей, позволяют избавиться от подобных проблем. Правда, у таких устройств есть и отрицательные стороны – в частности, речь идет о крайне высокой стоимости поворотных систем. Кроме того, в ряде случаев приобретение такого оборудования никак не влияет на эффективность системы – например, если не были должным образом учтены климатические условия. Затраты в данном случае будут совершенно нецелесообразными.

Согласно примерным расчетам, для того, чтобы поворотные элементы окупились, их количество должно составлять не менее восьми. Конечно, можно использовать и меньшее количество модулей (около 3-4), но они будут выгодным приобретением только в том случае, если подключать их напрямую к водяному насосу, в остальных же случаях прирост эффективности будет незначительным.

На сегодняшний день активно ведется разработка совершенно нового вида крыши, в котором солнечные батареи установлены изначально. Согласно заверениям производителей, такая крыша будет стоить существенно дешевле обычных крыш, на которых устанавливается солнечное оборудование, и как минимум столь же эффективной.

Выгодны ли солнечные батареи для частного дома

В западных странах мода на солнечную энергетику продиктована больше заботой об экологии, чем поиском экономической выгоды. У нас реалии несколько иные.

При сохранении нынешних цен на поставляемое электричество, система из солнечных батарей, собранная своими руками для одного частного дома и семьи из 4 х человек, полностью окупается за 4-5 лет. При этом срок службы фотоэлементов – составляет 20-25 лет, а вот аккумуляторы придется менять через 5-7 лет в зависимости от качества батарей.

Пока нигде в мире (и Россия не исключение) не наблюдается снижения цен на поставляемое электричество, поэтому за срок службы фотоэлементов в солнечной панели, система успеет окупиться как минимум 4-5 раз.

Рейтинг ТОП 5 лучших солнечных панелей

Давайте взглянем на рейтинг, в который входят лучшие модели солнечных панелей:

  • Delta SM — 150 — 12P.
  • Delta SM — 200-12P.
  • Exmork ФСМ-100П.
  • TOPRAY 100 ватт 12В.
  • Feron PS 0303 150 W.

Рассмотрим каждую модель более подробно.

Delta SM — 150 — 12P

Батарея направлена на сбор рассеянного солнечного питания в дождливую и холодную погоду. Преобразование фотоэлектрической эффективности (КПД) равен 17,12%. Потребляемая температура от -40 до +85°С. Обычная рабочая температура без потери мощности +47°С. Температурный лимит мощности равен -0,45%.

Разновидность кремниевая поликристаллическая
Напряжение 12 В
Срок эксплуатации 10 лет
Номинальная мощность 150 Вт

Цена: от 5950 от 8570 рублей.

  • высокая производительность даже при сплошной облачности;
  • закаленное стекло высокой прозрачности;
  • прочный алюминиевый профиль и жесткая конструкция защищает панель от деформации.
  • снижение мощности при росте температуры (-0,45%°С).

Delta SM — 200-12P

Современная солнечная панель, изготовленная из материалов премиум-класса, является бюджетной моделью среди своих аналогов. Фронтальное закаленное стекло обеспечивает устойчивую подачу электроэнергии даже в суровых зимних условиях. Кабель повышенной прочности и современные диоды обеспечивают бесперебойное использование батареи. Конструкция рамы построена на принципе обеспечения наибольшей жесткости, а использование профилированного алюминия значительно облегчает массу конструкции.

Тип кремниевая поликристаллическая
Напряжение 12 В
Номинальная мощность 200 Вт
Срок службы 10 лет
Рейтинги по теме: Рейтинг ТОП 7 лучших катушек для спиннинга: какую выбрать, отзывы, цена

Стоимость: от 8600 до 10980 рублей.

  • потеря мощности за 10 лет не более 10%;
  • прочное каленое стекло толщиной 3,2 мм;
  • эффективно преобразует рассеянную солнечную энергию.
  • не выявлено.

Exmork ФСМ-100П

Солнечная батарея Exmork ФСМ-100П отличный вариант для тех, кто хочет получить самый дешевый и бюджетный прибор для построения небольшой системы автономного электроснабжения. Выполнена из кремниевых ячеек Sunny Energy Science and Technology, рама из анодированного алюминия. Закаленное стекло с высокой светопропускаемостью. Клеммная коробка с диодами и кабель 0,9 м с разъемами MC4. Диапазон рабочих температур от -40°С до +80°С.

Тип кремниевая поликристаллическая
Напряжение 12 В
Номинальная мощность 100 Вт
Срок эксплуатации 10 лет

Цена: от 4000 до 8600 рублей.

  • светопроницаемость стекла 97%;
  • закаленное стекло выдерживает даже крупный град;
  • выдерживает ветер со скоростью 60 м/с.
  • не обнаружено.
 

TOPRAY 100 ватт 12В

Монокристаллическая кремниевая гибкая солнечная панель. Напряжение 12 В, мощность — 100 Вт. Батарея состоит из 32 ячеек. Фотоэлектрические элементы имеют категорию качества Grade A. Их эффективность преобразования может достигать более 20%. Температурные условия работы от -40 до +85°С. Срок службы при правильном использовании доходит до 20 лет. Производитель – Китай.

Тип кремниевая монокристаллическая
Напряжение 12 В
Номинальная мощность 100 Вт
Срок эксплуатации 20 лет

Цена: от 9960 до 11560 рублей.

  • компактная и легкая (габариты — 110х57х0,25 см, вес — 2200 г);
  • эффективно преобразовывает прямое излучение солнца;
  • эффективно работает на морозе (до -40°С).
  • применима только для прямого излучения.

 

Feron PS 0303 150 W

Солнечная панель FERON PS0303 150W предназначена в целях заряда аккумуляторной батареи. В комплекте присутствует кабель для контроллера, контроллер 10А, 2 опоры, кабель 3м с зажимами. Имеется сумка для переноски. Применяется в целях питания электроприборов, рассчитанных на напряжение 12-14 В и заряда автомобильных аккумуляторов. Рабочая температура от -40 до +85°С.

Разновидность пленочная
Напряжение 17,6 В
Номинальная мощность 150 ВТ
Срок службы 3 года

Цена: от 18700 до 19770 рублей.

  • оборудована светодиодной индикацией уровня заряда, подключенной нагрузки;
  • аккумулятор защищен от перегрузки, перезаряда и избыточного заряда;
  • возможна зарядка мобильных устройств через USB разъем.
  • небольшой срок эксплуатации (3 года).
 

Заключение

Отопление на солнечных батареях – это довольно эффективная современная система, которую при наличии соответствующего опыта можно обустроить самостоятельно. Технологии постоянно развиваются, поэтому всегда есть возможность выбрать оптимальное оборудование, которое идеально подойдет для конкретных условий эксплуатации и полностью покроет все потребности в отоплении.

Источники

  • https://teplospec.com/alternativnoe-otoplenie/kakie-byvayut-solnechnye-batarei-dlya-otopleniya-doma-vidy-osobennosti-preimushchestva-i-nedostatki.html
  • https://oventilyacii.ru/otoplenie/solnechnye-batarei.html
  • https://DimDom.ru/otoplenie-doma-solnechnymi-batareyami.html
  • https://VashTehnik.ru/obogrevateli/solnechnyj-obogrevatel-dlya-doma.html
  • https://Energo.house/sol/solnechnoe-otoplenie.html
  • https://vyborok.com/rejting-luchshih-solnechnyh-panelej/
  • https://batteryk.com/obogrevatel-na-solnechnyh-batareyah
  • https://otivent.com/solnechnye-batarei-dlya-otopleniya-doma
  • http://electricadom.com/okupayutsya-li-solnechnye-batarei-dlya-chastnogo-doma.html
  • https://SvoyTop.ru/5-luchshih-solnechnyh-paneley/

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об инженерных системах
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: