Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях

Содержание
  1. Солнечные батареи: терминология
  2. Внутреннее устройство гелиобатареи
  3. Виды кристаллов фотоэлементов
  4. Принцип работы солнечной панели
  5. Эффективность батарей гелиосистемы
  6. Типы фотоэлектрических преобразователей
  7. Характеристики кремниевых солнечных батарей
  8. Монокристалл
  9. Поликристалл
  10. Аморфный кремний
  11. Нагрузки и энергопотребление
  12. Расчет электрических показателей
  13. Спецификация потребителей
  14. Оптимизация полученных значений
  15. Комплектация гелиоэлектростанции
  16. Действующее напряжение
  17. Установка солнечных батарей на крыше
  18. Пара советов по установке
  19. Схема установки солнечных батарей для дома
  20. Последовательное соединение солнечных батарей
  21. Параллельное соединение солнечных батарей
  22. Подключение солнечной батареи к аккумулятору схема
  23. Области применения солнечных панелей
  24. Преимущества и недостатки солнечных источников энергии

Солнечные батареи: терминология

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя, т.е. солнечные панели используют для отопления дома.

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор

Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

Внутреннее устройство гелиобатареи

Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

  1. Монокристаллические.
  2. Поликристаллические.

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Настоящим прорывов в области использования солнечной энергии стала разработка гибких панелей с аморфным фотоэлектрическим кремнием:

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

  • температуры воздуха и самой батареи;
  • правильности подбора сопротивления нагрузки;
  • угла падения солнечных лучей;
  • наличия/отсутствия антибликового покрытия;
  • мощности светового потока.

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Типы фотоэлектрических преобразователей

В промышленности существует классификация солнечных батарей по типу устройства и применяемого фотоэлектрического слоя.

По устройству делятся на:

  • панели из гибких элементов, они же гибкие;
  • панели из жестких элементов.

При развертывании панелей чаще всего используются гибкие тонкоплёночные. Они укладываются на поверхность, игнорируя некоторые неровные элементы, что делает данный тип устройства — более универсальным.

По типу фотоэлектрического слоя для последующего преобразования энергии панели делятся на:

  1. Кремниевые (монокристалл, поликристалл, аморфные).
  2. Теллурий–кадмиевые.
  3. Полимерные.
  4. Органические.
  5. Арсенида–галлиевые.
  6. Селенид индия– меди– галлиевые.

Хотя разновидностей множество, львиную долю в потребительском обороте имеют кремниевые и теллурий–кадмиевые солнечные панели. Эти два типа выбирают из–за соотношения кпд/цена.

Характеристики кремниевых солнечных батарей

Кварцевый порошок — это сырьевой материал для кремния. Данного материала на Урале и Сибири очень много, поэтому именно кремниевые солнечные панели есть и будут в большем обиходе, чем остальные подтипы.

Монокристалл

Монокристаллические пластины (mono–Si) содержат в себе синевато–темный цвет, равномерно размещенный на всей пластине. Для таких пластин применяется максимально очищенный кремний. Чем он чище, тем солнечные батареи имеют КПД выше и самую наибольшую стоимость на рынке таких устройств.

Преимущества монокристалла:

  1. Наивысший КПД — 17–25%.
  2. Компактность — задействование сравнительно с поликристаллом меньшей площади для развертывания оснащения в условиях тождества мощности.
  3. Износостойкость — бесперебойная работа выработки электроэнергии без замены основных комплектующих обеспечивается за четверть века.

Недостатки:

  1. Чувствительность к пыли и грязи — осевшая пыль не дает батареям работать со светом от светила и соответственно уменьшает КПД.
  2. Высокая цена равна увеличенному сроку окупаемости.

Так как mono–Si нуждаются в ясной погоде и лучах Солнца, панели устанавливаются на открытых местах и поднятые на высоту. Насчет местности, то предпочтение отдается местности, в которой ясная погода обыденность, а количество солнечных дней приближено к максимальному.

Поликристалл

Поликристаллические пластины (multi–Si) наделены неравномерным синим окрасом из–за разнонаправленности кристаллов. Кремний не настолько чист, как в используемых mono–Si, поэтому КПД несколько ниже, вместе со стоимостью таких солнечных батарей.

Положительные факты поликристалла:

  1. Коэффициент полезного действия 12–18%.
  2. При неблагоприятной погоде КПД лучше, чем у Mono–Si.
  3. Цена данного агрегата меньше, а сроки окупаемости намного ниже.
  4. Ориентация на солнце не принципиальна, поэтому можно размещать их на крышах различных строений.
  5. Длительность эксплуатации — эффективность поглощения энергии и аккумулирования электричества падает до 20% спустя 20 лет непрерывной эксплуатации.

Недостатки:

  1. КПД уменьшен до 12–18%.
  2. Требовательность к месту. Для развертывания нормальной станции выработки электроэнергии нужно больше места, чем при задействовании батареи из монокристалла.

Аморфный кремний

Технология производства панелей существенно отличается от предыдущих двух. В приготовлении задействованы горячие пары, опускающиеся на подложку без образования кристаллов. При этом используется меньше производственного материала и это учитывается при формировании цены.

Преимущества:

  1. Коэффициент полезного действия — 8–9% во втором поколении и до 12% в третьем.
  2. Высокий коэффициент полезного действия при не совсем солнечной погоде.
  3. Возможность использования на гибких модулях.
  4. Эффективность батарей не падает вниз при повышении температуры, что позволяет монтировать их на всякие поверхности с нестандартной формой.

Основным недостатком можно считать меньший КПД (если сравнивать с иными аналогами), в связи с чем требуется большая площадь для получения сопоставимой отдачи от оборудования.

Нагрузки и энергопотребление

Принудить энергию солнца работать на себя непросто и дорого. Первый шаг — определить для своего хозяйства оптимальную пиковую нагрузку и рациональное среднесуточное энергопотребление. Первый параметр определяют в киловаттах, а второй — в киловатт-часах.

Пик нагрузки приходится на тот момент, когда возникает необходимость включить одновременно несколько единиц домашней техники. Для вычисления мощности, каждую из них суммируют, учитывая высокие пусковые характеристики отдельных ее частей. Владея сведениями о максимуме потребляемой мощности, можно исключить те электроприборы, одновременная работа которых не так уж необходима. От этого показателя зависит выбор мощностных характеристик элементов электростанции, а следовательно, и стоимость ее в целом. Если мощность электроприбора и время, в течение которого он функционирует на протяжении суток, перемножить, узнаем потребность его в электроэнергии на сутки.

Путем сложения суточного электропотребления каждой единицы домашней техники вычисляют общую среднесуточную потребность в электроэнергии. Только при таком подходе можно расходовать солнечное электричество рационально. Полученные итоговые значения нужны и для вычисления емкости аккумуляторов. Стоимость этой важной единицы системы также зависит от итогов вычислений.

Расчет электрических показателей

Для начала все домашние электроприборы следует занести в таблицу. В ней должно быть 30 граф, а количество строк равно числу приборов. В первую колонку вносят порядковый номер, во вторую — название электрического прибора, в третью — потребляемую мощность. Следующие столбцы, вплоть до 27 — расписанные по часам сутки, начиная с 0 часов и заканчивая 24. Здесь же через дробь в десятичном виде указывают время работы прибора (числитель) и его потребляемая мощность (знаменатель).

Так будет легко подсчитать часовые нагрузки. В колонке под номером 28 записывают суммарное время, на протяжении которого работала техника в течение суток. В следующую колонку вносят потребление электричества конкретным электроприбором.

Определяют его путем умножения времени на индивидуальную мощность, потребляемую прибором. В 30 колонке — примечания и промежуточные подсчеты.

По данной таблице, вы сможете рассчитать общую потребляемую мощность всех приборов для вашего частного дома или дачи

Спецификация потребителей

Заполненную таблицу используют и при дальнейших расчетах. Прежде всего, для составления спецификации. В первой ее графе проставляют порядковые номера, а во второй прописывают наименования приемников электроэнергии. Сначала вносят в эту колонку спецификации электроприборы, находящиеся в прихожей.

Далее перечисляют по порядку все, что находится в следующих помещениях.

Второй этаж и помещения над ним, если такие имеются, описывают в таком же порядке, взяв за исходную точку лестницу. Освещение двора и лестничных пролетов также подлежит включению в спецификацию.

Синхронно со второй заполняют и третью колонку, указывая в ней напротив каждой единицы домашней техники ее мощность. В столбцах 4 – 27 отображают часы суток и подчеркивают их горизонтальными линиями. Под этой линией вписывают значения мощности, такие же как и в третьей графе.

После заполнения всех часовых колонок, построчно подсчитывают, сколько времени в сутки работал прибор. Результаты заносят в 28 колонку в соответствующий квадрат. Так, продвигаясь постепенно, высчитывают электропотребление потребителей, входящих в перечень, за каждые сутки.

Фиксируют эти величины в 29 столбце. Когда в спецификации не останется ни одной свободной колонки и строки, выполняют итоговые расчеты. Знаменатели часовых колонок суммируют, чтобы узнать нагрузки, приходящиеся на каждый час.

Чтобы определить общее среднесуточное значение, складывают суточные величины электропотребления каждого прибора, продвигаясь сверху вниз. Допустим, есть телевизор, потребляющий 30 Вт и работающий в среднем 5 часов в сутки, три лампы, потребляющие по 15 Вт за каждый час при 6 часовой работе ежедневно и холодильник — 600 Вт на протяжении 24 часов.

Такой фактор, как собственное потребление проектируемой гелиосистемы этот расчет не предусматривает. Поправку на него учитывает вспомогательный коэффициент, применяемый на следующем этапе расчета.

Оптимизация полученных значений

Если идет речь о создании на 100% автономной системы, здесь солнечное электричество вырабатывается довольно дорого. В этом случае, исходя из данных, занесенных в спецификацию, лучше оставить в перечне только приборы с энергосберегающими характеристиками — если это лампы, то светодиодные или люминесцентные, если холодильник, то класса А, а еще лучше А++ .

Приборы, которые не относятся к разряду самых необходимых, выгодней питать от генератора. Когда гелиостанция — резервный вариант, то при временном отсутствии централизованной подачи электропитания, также лучше не использовать энергоемкую технику до момента, пока ситуация не нормализуется.

Солнечная электростанция будет работать стабильно в безаварийном режиме, если нагрузки выровнять по максимуму, исключить возможность резких временных провалов электропотребления. Опираясь на эти критерии, можно выбрать для своей солнечной установки экономичные варианты составляющих ее модулей. Полнее раскрыть всю картину поможет график.

На нем четко можно проследить неравномерность потребления электроэнергии и сделать так, чтобы пиковые нагрузки приходились на период, когда солнце наиболее активно.

На данном графике вы сможете отследить как неравномерно энергопотребление: нам нужно – сдвинуть максимумы на время наибольшей активности солнца и снизить потребление электроэнергии в сутки, особенно ночью.

Оптимизировать нерациональный график энергопотребления можно на базе спецификации, снизив как суточное потребление, так и среднесуточную почасовую нагрузку. Возможно, нет смысла покупать более мощные и дорогие солнечные модули, а разумней смириться с небольшими временными неудобствами.

Комплектация гелиоэлектростанции

Чтобы правильно подобрать комплектующие для своей электростанции, необходимо определить количество приборов и их мощность. Для наглядности лучше рассмотреть конкретный пример: есть дача, находящаяся в пригороде Рязани, в которой проживают, начиная с марта и по сентябрь.

В комплектацию солнечных батарей входят: солнечные панели, инвертор, крепеж, дополнительные материалы (кабели, автоматы и т.д.) Среднесуточное потребление равно 10 000 Вт/ч, Нагрузка — в среднем 500 Вт, Максимальная нагрузка — 1000 Вт. Подсчитаем пиковую нагрузку, увеличив максимальную на 25%: 1000 х 1,25 = 1250 Вт.

Действующее напряжение

Наиболее часто встречаемый номинал аккумуляторной батареи — кратный 12 В. Такие компоненты гелиостанции, как контроллер, инвертор, солнечные модули рассчитаны на напряжение от 12 до 48 В. Присутствие 12 В аккумуляторов удобно тем, что при выходе их из строя, замену можно выполнить по одному.

При напряжении вдвое большем, исходя из специфики эксплуатации АБ, возможна только замена пары. В сети 48 В на одной ветке придется менять все четыре батареи, к тому же 48 В — это уже угроза с точки зрения электробезопасности. С другой точки зрения, чем выше напряжение, тем меньшего сечения провода потребуются, а контакты будут более надежными.

При выборе номинала нужно учитывать как мощностные характеристики инверторов, так и значение пиковой нагрузки:

48 В — от 3 – 6 кВТ;

24 или 48 В — от 1,5 – 3 кВт;

12, 24, 48В — до 1, 5 кВт.

Если емкость и цена АБ примерно равны, выбор следует остановить на аккумуляторе с наивысшей допустимой глубиной разряда и наибольшей разрешенной величиной тока. Ресурс АБ значительно повышается, когда этот показатель не превышает 30 – 50%.

«Главным критерием при выборе батареи должна быть надежность. В конкретном случае исходным будет напряжение в системе 24 В.»

Установка солнечных батарей на крыше

После того как сборка солнечной батареи из набора пластин была выполнена или вы приобрели готовые модули следует произвести их монтаж на крышу.

Установка происходит в 3 этапа:

  1. Выбор места.
  2. Поднятие их на верх или постановка туда где желаете разместить.
  3. Крепление солнечных батарей к поверхности.

Перед монтажом проследите за тем чтобы солнечные батареи не были закрыты деревьями, исходящим из трубы дымом, соседскими домиками, столбами, вышками.

Виды мест для установки солнечных батарей:

  1. Крыша.
  2. Стены.
  3. Территория в несколько квадратных метров земли.
  4. Фасады.
  5. Балконы.

Зазор между фотоэлементами и кровлей должен составлять 10-15 см. Причина проста, они сильно нагреваются в процессе работы.

Батарею следует устанавливать на юг, юго-восток и юго-запад. Лучше всего поставить элемент питания на следящую за солнцем поверхность. Автомат будет постоянно направлять батарею в сторону солнца.

Угол установки солнечных батарей достаточно варьирует он находится в пределах 15-900. Но здесь все сугубо зависит от местности проживания. Например, в Европейской части России градусная кривая будет от 30-60.

Наклон так же зависит от крыши. Поэтому учитывайте это в расчетах.

На данный момент изготавливается несколько крепежных приспособлений:

  1. Свободностоящие – крепятся с помощью дополнительных установок.
  2. Наклонные – идеальны для скатных крыш.
  3. Встроенные фотоэлектрические панели в шифер или здание. Могут выполнять двоякую функцию. Защищают и дают электричество. То есть черепица батарейка!

Тень от разных объектов может быть причиной падения КПД!

Крепежные материалы изготавливаются из металла часто из алюминия. Встречаются так же из стали и оцинкованного железа.

Пара советов по установке

  1. Прежде чем монтировать следует все просчитать. Поставьте на компьютер специальную программу и выполните расчеты в ней.
  2. Избегайте не аккуратного обращения с батареями. Они достаточно хрупкие. Чтобы спасти элементы зимой от осадков можно поставить снегозадержатели или рассекатели снега.
  3. Не допускайте попадания влаги в АКБ.
  4. Следует серьезно отнестись к креплениям конструкции. На их долю выпадает нагрузка не только от солнечных батарей, но и погодных напастей.

Из начально следует установить на крушу специальные крепления профили из алюминия. Они прикрепляются специальными зажимами к шиферу. Установка солнечных батарей может быть выполнена своими руками. Важно помнить, что полюса должны тянуть от себя два провода.

Если нет желания самостоятельно возиться с монтажом энергоустановки, тогда можно заказать это дело под ключ! Благо компаний сейчас хватает. Без проблем они поставят панели на дом, дачу, коттедж или балкон. Причем установка будет выполнена правильно по всем нормам.

Схема установки солнечных батарей для дома

После того как плоский солнечный источник питания будет полностью установлен на черепицу можно приступать к электрификации.

Выделяют два типа соединений элементов тока.

Последовательное соединение солнечных батарей

Это когда батарея идет одна за другой и положительный вывод цепляется к отрицательному.

Параллельное соединение солнечных батарей

Данное соединение так же реализуемо. Лучше всего подсоединить провода последовательно и подать их на преобразователь. Главное в этом деле соблюдать полярность.

Подключение солнечной батареи к аккумулятору схема

Все присоединение выполняется через контроллер. Только через него можно цеплять батареи к АКБ.

Поступивший ток с солнечных батарей переходит в контроллер. Далее обрабатывается и подается на нагрузку в 12 вольт. Часть его из отдельного разъема поступает на клеймы аккумулятора. С АКБ ток идет на инвертор, а после него он поступает в розетку дома. Только после такой сложной процедуры хозяин может подключить имеющиеся у него приборы. Заметьте в двух местах электричество поступает через предохранитель. Это нужно для увеличения уровня безопасности при перегрузках.

Области применения солнечных панелей

  • Портативная электроника. Для снабжения электричеством и(или) подзарядки аккумуляторных батареи разной бытовой электроники.
  • Электромобили. Подзарядка автотранспорта.
  • Авиация. Разработка самолета, использующего только энергию солнца.
  • Энергообеспечение зданий. Электроснабжение дома, за счет размещения крупных солнечных батарей на крышах.
  • Энергообеспечение населённых пунктов. Создание солнечных электростанций.
  • Дорожное покрытие. Дороги, покрытые солнечными панелями, для освещения их же в ночное время.
  • Использование в космосе. Электроснабжение космических аппаратов.
  • Использование в медицине. Внедрение под кожу миниатюрную солнечную батарею для обеспечения работы приборов, имплантированных в тело.

Преимущества и недостатки солнечных источников энергии

Преимущества:

  • Экологически чистая энергия;
  • Неисчерпаемость и постоянство солнечной энергии;
  • Минимум обслуживания;
  • Длительный срок службы;
  • Доступность;
  • Экономичность;
  • Большая область применения.

Недостатки:

  • Высокая цена панелей;
  • Нерегулярность из-за погодных условий;
  • Высокая цена аккумуляторных батарей для аккумулирования энергии;
  • Для большей мощности необходимо устанавливать большие площади солнечных панелей.

Таким образом, анализируя все вышеупомянутое, можно отметить, что в данный момент получить выгоду от солнечной энергии могут лишь достаточно богатые собственники загородных домов. Они могут без проблем дождаться того этапа, когда батареи окупят себя.

 
Источники

  • https://sovet-ingenera.com/eco-energy/sun/princip-raboty-solnechnoj-batarei.html
  • https://VashUmnyiDom.ru/elektropitanie/alternativnaya-energiya/solnechnye-batarei.html
  • https://zen.yandex.ru/media/ecoenergetics/solnechnye-batarei-dlia-dachi-i-doma-princip-raboty-i-podbor-komplektuiuscih-5c84d728c92daf00b409f246
  • https://batareykaa.ru/solnechnye-batarei-dlya-doma-i-dachi/
  • https://101svetilnik.ru/spravochnik/solnechnye-batarei-princip-raboty

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об инженерных системах
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: